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For a given automorphism φ of a group G define Fix(φ) = {g ∈ G : φ(g) = g}.
A subgroup H of G is a fixed subgroup if there is an automorphism φ of G with
H = Fix(φ). Our main result is the following:

Theorem: A torsion free hyperbolic group contains, up to isomorphism, only finitely
many fixed subgroups.

The Scott Conjecture, which was proven by M. Bestvina and M. Handel [BH],
states that the rank of fixed subgroups in a free group of rank n, Fn, are at most n. In
particular, Fn contains, up to isomorphism, only finitely many fixed subgroups. Our
result may be viewed as an extension of this last statement to the class of torsion free
hyperbolic groups. Fixed subgroups of hyperbolic groups have been investigated by
Paulin [P1] and Neumann [N]. The first shows that fixed subgroups are always finitely
generated and the second shows they are always rational, which implies hyperbolicity.

In [S], Sela reproves the Scott Conjecture. It is his proof on which ours is based.
Using work of Paulin [P2], Sela is able to isolate the subgroup where an automor-
phisms is periodic. To be exact, he shows that an automorphism of a free group is
periodic on a vertex group in a graph of groups decomposition with trivial or infinite
cyclic edge groups. He also establishes this result for freely indecomposable torsion
free hyperbolic groups, and this is our starting point.

I would like to thank my thesis advisor, Mark Feighn for his support and many
helpful conversations throughout the course of this work. I would also like to thank
Mladen Bestvina for many helpful suggestions.
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SECTION 1

In this section we collect some definitions and recall some results that will be
needed in the course of our proof. We assume the reader is familiar with the notation
and terminology of the Bass-Serre theory of group actions on trees, as well as the JSJ
decomposition of a torsion free, freely indecomposable hyperbolic group.

Definition 1.1: A group G is freely indecomposable if G = A ∗ B implies A or B is
trivial.

Definition 1.2: Recall that JSJ decomposition is a graph of groups presentation of
a group. Call a tree T associated to a JSJ decomposition of G a JSJ tree for G.

Definition 1.3: Suppose G acts by isometries on a simplicial tree T . Let Aut(G)
denote the automorphism group of G. Denote by Aut(G, T ) the subgroup of Aut(G)
consisting of all automorphisms φ such that whenever H ⊂ G stabilizes a point of T
so does φ(H).

If we have a G tree T with infinite cyclic edge stabilizers and it was not the case
that Aut(G) = Aut(G, T ) we could then let G act on T via some automorphism not
in Aut(G, T ). We then would get a new splitting of G over infinite cyclic groups.
This can’t be the case, however, if T is a JSJ tree for G. Hence we have:

Proposition 1.4: If G is a freely indecomposable group and T a JSJ tree for G then
Aut(G) = Aut(G, T ).

We will also need a result of [Gu] which characterizes the Bass-Serre splittings of
a hyperbolic group G over infinite cyclic edge groups.

Definition 1.5: Let G be a freely indecomposable group. Call H ⊂ G a Z-factor if H
is the stabilizer of a point in some G tree for which has infinite cyclic edge stabilizers.

Definition 1.6: Suppose a group G has a graph of groups decomposition with as-
sociated tree T . Choose an edge in the underlying graph and collapse all of its lifts
in T to a point. The result is a new G tree T

′
. This produce a new graph of groups

decomposition for G. If we perform a sequence of these moves on T we say we are
blowing down T . Call the reverse procedure blowing up T . In this paper blowing up
will always consist of new infinite cyclic splittings realized by simple closed curves on
the surfaces underlying quadratically hanging subgroups.

Definition 1.7: Suppose G acts on a Bass-Serre tree T . If H is a finitely generated



3

subgroup of G denote by TH the minimal subtree for H in T . Also, if e ⊂ T is a
subset of T denote by Stab(e) the subgroup of G which fixes e point wise.

Theorem 1.8 [Gu]: Suppose H is a Z-factor of G with S its associated G tree. There
is a JSJ tree T for G which can be blown up and then blown down into S.

Definition 1.10: Let Per(φ) = {g ∈ G : φi(g) = g for some integer i}, the
subgroup of G where φ is periodic.

The next fact we will need is a restatement of a theorem of Sela. His Theorem 3.2
[S] along with the observations of how Per(φ) must act on his limit trees (in Theorem
4.1 of the same paper) give us the following fact:

Theorem 1.11 [S]: Suppose G is a torsion free, freely indecomposable hyperbolic
group. Either Fix(φ) is trivial, infinite cyclic or Per(φ) is a Z-factor of G.

Definition 1.12: Recall Out(G) = Aut(G)/Inn(G) where Inn(G) are the inner
automorphisms of G. Also if H ⊂ G denote by AutG(H) the automorphisms of H
which extend to automorphisms of G.

The following fact is crucial for us and is indeed the reason we are ’better off’ once
we have ’reduced’ our question to a question about the JSJ vertex groups.

Proposition 1.13 [P] [S]: Let G be a freely indecomposable hyperbolic group and
V a subgroup of G which stabilizes some point in a JSJ tree of G. Also suppose V
is not a quadratically hanging subgroup. It is then the case that AutG(V ) has finite
image in Out(V ).
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SECTION 2

We prove our main theorem assuming three lemmas. The proofs of the three
lemmas are contained in the remaining sections.

Theorem: A torsion free hyperbolic group G contains, up to isomorphism, only
finitely many fixed subgroups.

Lemma 1: It is enough to prove our main theorem in the case that G is freely
indecomposable.

Lemma 2: Suppose G is a freely indecomposable torsion free hyperbolic group and
φ ∈ Aut(G). Either Fix(φ) is trivial, infinite cyclic or Fix(φ) receives a graph of
groups presentation G with the following properties:

(i) Edge groups are trivial or infinite cyclic.

(ii) There is a bound k, depending only on G so that the underlying graph of G has
at most k edges.

(iii) Vertex groups are trivial, infinite cyclic or the fixed subgroup of φ restricted to
a vertex stabilizer in some JSJ tree for G.

Definition 2.1: Let L1 and L2 be finite collections of conjugacy classes in groups H1

and H2. Say (H1, L1) is equivalent to (H2, L2), written (H1, L1) ∼ (H2, L2), if there
is an isomorphism from H1 to H2 which maps the conjugacy classes in L1 bijectively
to L2. This is seen to be an equivalence relation.

Definition 2.2: Suppose G is a freely indecomposable torsion free hyperbolic group.
Let U be the set of all graph of groups presentations , over all φ ∈ Aut(G), that
Fix(φ) recieves (as in lemma 2), for which Fix(φ) is not trivial or infinite cyclic. Let
V be the set of pairs (H,L), where H is a vertex stabilizer in a tree associated to
some graph of groups presentation in U , and L is the conjugacy classes (in H) of all
edge groups incident to H.

Lemma 3: Suppose G is a torsion free, freely indecomposable hyperbolic group. It is
the case that |V/ ∼ | is finite.
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Proof of Theorem: By Lemma 1 we may assume G to be freely indecomposable.
By Lemma 2, for each φ ∈ Aut(G), Fix(φ) receives a graph of groups presentation
with at most k edges. This implies that, over all φ ∈ Aut(G) with fix subgroup not
trivial or infinite cyclic, there are only finitely many different underlying graphs in
these graph of group presentations.

It is enough to show our claim over each possible underlying graph. By Lemma
2 (i) and Lemma 3 we know there are only 2 possible edge groups and finitely many
different possible vertex groups. Hence given an underlying graph there are only a
finite number of ways of assigning edge and vertex groups. We are done if we show
that only finitely many fundamental groups occur from a specific way of adorning our
graph, where the freedom comes from different possible edge group monomorphisms.
We now show that with Lemma 3 this is indeed the case.

Choose a vertex v along with its incident edges e1, e2, ... en in our graph K.
Suppose H is associated to v and an infinite cyclic group is associated to each of e1,
e2, ... ei. By Lemma 3 there are only finitely many ways, up to isomorphism of H
and choice of conjugacy class, of picking the images of the bonding maps for the edge
groups. Further this is the case for each vertex of K.

Hence we may assume it is enough to show our claim in the case that we have
a) one underlying graph, b) one way of adorning it with edge and vertex groups,
and c) that at each vertex there is one way (up to isomorphism of the vertex group
and conjugacy class for the edge group in the vertex group) of choosing our edge
group monomorphisms for the edges which have the infinite cyclic group associated
to them. Given two graphs of groups decompositions which satisfy a)-c) we can easily
construct an isomorphism between there respective fundamental groups. We do this
by extending the obvious graph bijection to isomorphisms of the associated edge and
vertex groups. ♠
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SECTION 3

In this section we prove the following lemma:

Lemma 1: It is enough to prove our main theorem in the case that G is freely
indecomposable.

In [CT], Collins and Turner prove a free decomposition version of the Scott Con-
jecture. It is their result which will allow us to reduce to the freely indecomposable
case.

Let G be a group with G = Fr ∗ (
t∗
i=1

Gi), where each Gi is a non free, freely

indecomposable group and Fr is the free group on r elements. The Kuros subgroup

theorem states that if H is a subgroup of G then H = Fs ∗ (
u∗
i=1

Hi), where the Hi are

the intersections of H with conjugates of the factor groups Gi, Fs is free with rank s,
and Fs does not intersect any conjugate of any Gi. By [BL] the following definition
is well defined.

Definition 3.1: Suppose H ⊂ G and G = Fr ∗ (
t∗
i=1

Gi) where each Gi is a non free,

freely indecomposable group and Fr is the free group on r elements. Also suppose

H = Fs ∗ (
u∗
i=1

Hi), where the Hi are the intersections of H with conjugates of the

factor groups Gi, Fs is free with rank s, and Fs does not intersect any conjugate of
any Gi. Define s+u to be the Kuros subgroup rank of H in G denoted by KRk(G ,H ).
We also say KRk(G ,G) = r + t

One of the main results of [CT] is the following:

Theorem 3.2 [CT] For any φ ∈ Aut(G)

KRk(G ,Fix (φ)) ≤ KRk(G ,G).

Proof of Lemma 1: Suppose G is a torsion free hyperbolic group. Also suppose

G = Fr ∗ (
t∗
i=1

Gi) where each Gi is a non free, freely indecomposable group and Fr

is the free group on r. By Kuros Fix(φ) = Fs ∗ (
u∗
i=1

Si) where where the Si are

the intersections of Fix(φ) with conjugates of the factor groups Gi, Fs is free with
rank s, and Fs does not intersect any conjugate of any Gi. If Fix(φ) intersects some
freely indecomposable factor of G then φ must restrict to an automorphism of that
factor. Hence, assuming our main theorem is true for freely indecomposable torsion
free hyperbolic groups, there are only finitely many different possibilities for the Si.
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By Theorem 3.1 s+u ≤ r+t and there are only finitely many possibilities for Fix(φ).
♠
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SECTION 4

In this chapter we prove the following lemma:

Lemma 2: Suppose G is a freely indecomposable torsion free hyperbolic group and
φ ∈ Aut(G). Either Fix(φ) is trivial, infinite cyclic or Fix(φ) receives a graph of
groups presentation G with the following properties:

(i) Edge groups are trivial or infinite cyclic.

(ii) There is a bound k, depending only on G so that the underlying graph of G has
at most k edges.

(iii) Vertex groups are trivial, infinite cyclic or the fixed subgroup of φ restricted to
a vertex stabilizer in some JSJ tree for G.

We assume throughout this chapter that G is a torsion free, freely indecomposable
hyperbolic group whose JSJ decomposition contains n edges. By Theorem 1.11 for
every φ ⊂ Aut(G) Fix(φ) is trivial, infinite cyclic or Per(φ) is a Z − factor of G.
Suppose Per(φ) is a Z − factor of G. By Theorem 1.8 there is a JSJ tree T for G
which can be blown up and then down into a tree realizing Per(φ) as a Z − factor
of G. We will show that the action of Fix(φ) on TFix(φ) = (TPer(φ))Fix(φ) induces a
graph of groups presentation of Fix(φ) which satisfies the conclusions of Lemma 2.

First some facts about the dynamics of the edge stabilizers on the Bass-Serre tree
T .

Definition 4.1: A subgroup H ⊂ G is malnormal if gHg−1 ∩H 6= 1 implies g ∈ H.

Remark 4.2: It is shown in [G] that elements in a torsion free hyperbolic group have
infinite cyclic normalizers which are malnormal. This implies that if two elements
(one of which is non trivial) commute or share a common power then the subgroup
they generate is infinite cyclic.

Lemma 4.3: Let < g > be an infinite cyclic subgroup in a torsion free hyperbolic
group and let φ ∈ Aut(G). If φ(gn) ∈< g > then φ(gn) = gn and φ(g) = g, or
φ(gn) = g−n and φ(g) = g−1.

Proof: If φ(gn) ∈< g > then φ(g)φ(gn)φ(g)−1 ∈< g >. This implies φ(g) < g >
φ(g)−1 non trivially intersects < g >. Malnormality implies that < φ(g), g > is
infinite cyclic. If φ(g) then is not g or g−1 we are able to construct, an ascending
chain of infinite cyclic subgroups. Since this cannot occur in a hyperbolic group we
are done. ♠
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Lemma 4.4: Let e1, e2 and e3 be three consecutive edges in T with edge stabilizers
< g1 >,< g2 > and < g3 >. One of the following possibilities holds:

(i) < g1 > and < g2 > intersect trivially, or,

(ii) There is a g ∈ G with both < g1 > and < g2 > contained in < g >. If < g2 >
is properly contained in < g > then < g3 > is contained in < g2 >, or < g3 >
and < g2 > intersect trivially.

Proof: Suppose < g1 > and < g2 > intersect non trivially. If gn1 ∈< g2 > then
g1
n = g2

m, and by the above remark, < g1, g2 > is infinite cyclic, and hence there is
a g ∈ G with < g1 > and < g2 > contained in < g >. If < g2 > is properly contained
< g > then g does not stabilize e2. Now suppose < g > is not < g2 >, < g2 >
intersects < g3 > non trivially and < g3 > is not contained in < g2 > . By the same
argument there is an h ∈ G with < g2 > and < g3 > contained in < h >. Now h does
not stabilize e2 since < h > properly contains < g2 >. Now h and g normalize < g2 >
and by our above remark < g, h > must be infinite cyclic. This is a contradiction
because if an infinite cyclic group acts on a tree with some element acting elliptically
(g2) then the whole infinite cyclic group fixes one point. But the infinte cyclic group
generated by h and g conatains g1 and g3, which by assumptions stabilize different
regions of T . ♠

Recall that by Proposition 1.4 Aut(G) = Aut(G, T ). This allows us to create,
from an automorphism φ of G, a continuous map φ∗ of T to itself. The details of this
construction along with some observations follow.

Definition 4.7 : Suppose v1 and v2 are distinct vertices of T . Denote by v1v2 the
unique geodesic in S bounded by v1 and v2.

Construction 4.8: Let T be a JSJ tree for G and φ an automorphism of G. Let
F ⊂ T be a lift of the quotient graph T/G. For a vertex v ∈ F suppose V is the
subgroup of G which stabilizes it. Since Aut(G) = Aut(G, T ), φ(V ) stabilizes some
vertex w ∈ T . Define φ∗(v) = w. Define φ∗ for each vertex in F in this fashion
and then extend over the rest of the vertices of T G-equivariantly. We conclude by
defining φ∗ on the edges of T . Suppose v1 and v2 are adjacent edges in T . Expand
φ∗ to v1v2 by linearly stretching v1v2 over φ(v1)φ(v2).

Definition 4.9: We have that φ∗ is a continuous map of T to itself which maps
vertices to vertices. If v1v2 ⊂ φ∗(v1)φ∗(v2) with orientations agreeing say v1v2 is an
expanding arc. We note that v1v2 may equal φ(v1)φ(v2) and still be an expanding arc.
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Lemma 4.10: Suppose each edge in T is declared to have length one. If v1v2 is an
expanding arc then v1v2 contains a length one expanding arc.

Proof: We induct on the length of v1v2. If the length of v1v2 is one then we are
done. So assume every expanding arc with length less than n contains a length one
expanding arc. Suppose v1v2 has length n. Choose a vertex w ∈ v1v2 not equal to v1
or v2. Let v be the point on v1v2 which is closest to φ∗(w). Without loss of generality
we can assume that v either, is v1 or w, or separates w from v1 on v1v2. It is then the
case that w, v2 is an expanding arc with with length less than n, and by our induction
hypothesis we are done. ♠

Lemma 4.11: If v1v2 is an expanding arc then

φ(Stab(v1v2)) ⊂ Stab(v1v2).

Proof: If v1v2 ⊂ φ∗(v1)φ∗(v2) then Stab(φ∗(v1)φ∗(v2)) ⊂ Stab(v1v2). We know
that Stab(φ∗(v1)φ∗(v2)) = Stab(φ∗(v1)) ∩ Stab(φ∗(v2)) which contains φ(Stab(v1)) ∩
φ(Stab(v2)) which is equal to φ(Stab(v1v2)). ♠

Remark 4.12: It is shown in [CM] that there are four possible types of non trivial
group actions on a tree. They are linear, dihedral, parabolic or hyperbolic. Dihedral
actions imply the existance of torsion elements, while parabolic actions on a tree with
infinite cyclic edge stabilizers implies the group is solvable. Recall that in a hyperbolic
group a solvable subgroup is virtually infinite cyclic [G]. Hence subgroups of a one
ended torsion free hyperbolic group admit only linear or hyperbolic actions on JSJ
trees.

Lemma 4.13: If φ ∈ Aut(G) then one of the following holds:

(i) The action of Fix(φ) on T is trivial or linear, or,

(ii) The action of Fix(φ) on TFix(φ) is hyperbolic, and, there is a length one expand-
ing arc e ∈ T .

Proof: By the above remark we assume the action of Fix(φ) on TFix(φ) is hyperbolic
and we show there is an expanding edge e ∈ T . A hyperbolic action of a group on
a tree is characterized by the existence of two elements acting hyperbolically on the
tree with disjoint axis [CM]. Let g, h ∈ Fix(φ) be these hyperbolic elements with
disjoint axis Ag and Ah. Let agah be the geodesic connecting Ag and Ah.

Following Construction 4.8 we can construct φ∗ from φ. If vg is a vertex on Ag,
since φ(gn) = gn and φ∗ was constructed to be G equivariant, we have φ∗(g

n(vg)) =
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gn(φ∗(vg)). By choosing an appropriate n we may assume gn(vg) ∈ agφ∗(gn(vg)). Let
v = gn(vg). Likewise on Ah we find a w satisfying similar conditions. It is then the
case that vw is an expanding arc, and by Lemma 4.10 we are done. ♠

Lemma 4.14: Suppose φ ∈ Aut(G) and that the action of Fix(φ) on TFix(φ) is

hyperbolic. Let f be an edge in TFix(φ)/F ix(φ), f̃ a lift of f in TFix(φ), and Stab(f̃) =<
g >. It is the case that φ(g) = g or φ(g) = g−1.

Proof: Following Construction 4.8 we obtain φ∗ from φ. By Lemma 4.13, under
φ∗, T contains and length one expanding edge e. A theorem of Bass [B] tells us
that the minimal tree in a group action is the union of the axis of hyperbolically
acting elements. Hence there is a h ∈ Fix(φ) acting hyperbolically on TFix(φ) with

axis containing f̃ . Since φ∗ was constructed to be G equivariant hn(e) are expanding
edges for all n. Without loss of generality we may assume that there are integers n
and m such that f̃ is contained in the geodesic connecting hn(e) and hm(e). Let E
be the smallest arc containing hn(e) and hm(e). Since hn(e) and hm(e) are length one
expanding arcs, E is also an expanding arc.

Suppose there are no two adjacent edges on E with trivially intersecting edge
stabilizers. If this were the case then by Lemma 4.4 there would be an element k ∈ G
which stabilizes all of E. Since E is an expanding arc it contains an expanding edge
which has a stabilizer containing k. By Lemma’s 4.3 and 4.11 φ(k) = k±1. But k also
stabilizes f̃ . Hence k = gn for some n, and by Lemma 4.3 φ(g) = g±1.

We will show that if e1 and e2 are adjacent edges on E whose stabilizers intersect
trivially, then φ∗ fixes e1 ∩ e2. If this is the case then we can pick a sub arc of E,
which contains f̃ , is expanding, and contains no two adjacent edges with trivially
intersecting edge stabilizers. We are then done by the preceding paragraph.

Consider the sub arcs Ei of E determined by those vertices of E which lie between
adjacent edges whose stabilizers intersect trivially. Again by Lemma 4.3 for each Ei
there is a gi ∈ G which stabilizes all of Ei. Further, if i 6= j then < gi > ∩ < gj > is
the trivial group. This implies that if i 6= j φ∗(Ei) ∩ φ∗(Ej) is at most a point. Also
φ∗(Ei) can’t intersect more than one Ej. These observations along with the fact that
E is an expanding arc implies that φ∗ must fix the endpoints of each Ei. ♠

We are now ready for the proof of Lemma 2.

Proof of Lemma 2: Choose an automorphism φ of G. Suppose Fix(φ) is not trivial
or infinite cyclic. Consider the action of Fix(φ) on TFix(φ) = (TPer(φ))Fix(φ), where T
is a JSJ tree for G promised by Theorem 1.8. Clearly we have (i) since T is a tree
for G which has infinite cyclic edge stabilizers.

Suppose a JSJ decomposition for G has n edge groups. Further suppose that m
is the maximum index of all edge groups in their respective normalizers. It is shown
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in [S] that both n and m are invariants of G, and hence so is nm. We claim that over
all automorphisms φ, TFix(φ)/F ix(φ) has at most 2nm edges.

Suppose TFix(φ)/F ix(φ) has greater than 2nm edges. We claim it is then the
case that there are 2m + 1 edges e0, e1, ..., e2m in TFix(φ)/F ix(φ), with lifts ẽi for
i = 0, 1, 2, ..., 2m in TFix(φ), which are in the same orbit under Per(φ). Since there
are only n G orbits of edges clearly there are 2m+1 lifts which are G equivalent. Since
TFix(φ) = (TPer(φ))Fix(φ) all of the lifts are in TPer(φ). Since Per(φ) is a Z− factor of
G, any edges in TPer(φ) which are G equivalent are also Per(φ) equivalent. Hence we
have our claim.

We force a contradiction by showing two of these edges are in the same orbit under
Fix(φ). Suppose γ stabilizes e0. By the last paragraph there exist gi in Per(φ) with
giγg

−1
i stabilizing ei for i = 1, 2, ..., 2m. By Lemma 4.14 we know that φ(γ) = γ or

φ(γ) = γ−1, and for each i we have φ(giγg
−1
i ) = giγg

−1
i or φ(giγg

−1
i ) = giγ

−1g−1
i

If φ(γ) = γ then φ(giγg
−1
i ) = φ(gi)γφ(g−1

i ), which we claim must equal giγg
−1
i .

If φ(giγg
−1
i ) = giγ

−1g−1
i then g−1

i φ(gi) is an element which conjugates γ to its
inverse, something that can’t happen in a torsion free hyperbolic group. Since
φ(gi)γφ(g−1

i ) = giγg
−1
i , g−1

i φ(gi) normalizes γ and hence φ(gi) = giγ
ri , where γ gen-

erates the normalizer of γ and ri is some integer. Since gi ∈ Per(φ) ri must be zero
and φ must fix each gi. This implies all of the edges are in fact in the same Fix(φ)
orbit, contradicting the fact that they are lifts of different edges in TFix(φ)/F ix(φ).

If φ(γ) = γ−1 by the same reasoning as above we have φ(giγg
−1
i ) = giγ

−1g−1
i and

φ(gi) = giγ
ri . Recall that m is the maximum index of the edge groups in their respec-

tive normalizers. Hence we have γmγ = γ for somemγ whose absolute value is less than
or equal to m. Notice that φ(giγ

r) = giγ
riγ−r = giγ

rγriγ−2r = (giγ
r)γri−2mγr. Choos-

ing r appropriately (a different one for each gi) we may assume 0 ≤ ri−2mγr ≤ |2mγ|.
Replace each gi with giγ

r (where the r is chosen for each i to insure that the last
inequality holds) and still call it gi. This new gi still stabilizes ei. Since |2mγ| ≤ 2m
and there exist gi and gj, with i not equal to j with (using the new values) ri = rj.
It is then the case that gig

−1
j is fixed by φ and takes ej to ei. Contradicting the fact

that the ei are lifts of different edges in TFix(φ)/F ix(φ). This completes the proof of
(ii).

Suppose H ⊂ Fix(φ) is not contained in an infinite cyclic group and stabilizes
a vertex v ∈ T . It’s then the case that φ∗(v) = v This implies φ restricts to an
automorphism of the stabilizer of v in G. This shows (iii). ♠
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CHAPTER 5

In this chapter we prove Lemma 3. We assume throughout this chapter that G
is a torsion free, freely indecomposable hyperbolic group. Before we are ready for
the proof of Lemma 3 we need a few observations pertaining to a certain short exact
sequence.

Since a torsion free hyperbolic group which is not infinite cyclic has no center, it
is the case that the identification of it with its groups of inner automorphisms is an
isomorphism. Let V be a JSJ vertex group for G which is not quadratically hanging
and not infinite cyclic. Since every φ ∈ Inn(V ) can be extended to an automorphism
of G, by identifying V with Inn(V ) we obtain the following short exact sequence:

1→ V → AutG(V )→ K → 1.

Here K ⊂ Out(V ) and by Proposition 1.13 is finite. For φ ∈ AutG(V ) its action as
an automorphism of V is realized by its action as conjugation in AutG(V ) restricted
to Inn(V ). That is to say, if i is the identification of V with Inn(V ) and g ∈ V
then φ(g) = i−1(φi(g)φ−1). Notice that φi(g)φ−1 ∈ Inn(V ) since Inn(V ) is normal
in AutG(V ).

If φ ∈ AutG(V ) denote by FixV (φ) its fixed subgroup in V . Denote by iφ the
inner automorphism of AutG(V ) determined by φ. We are concerned with the different
possibilities, over AutG(V ) for FixAutG(V )(iφ)∩ Inn(V ). The following lemma will be
useful:

Lemma 5.1: Let ρ and φ be elements of AutG(V ). It is the case that ρ(FixAutG(V )(iφ))ρ−1 =
FixAutG(V )(iρφρ−1).

Proof: This lemma is the fact that the conjugate of the centralizer is the centralizer
of the conjugate. First we show containment from left to right. Let h ∈ FixAutG(V )(iφ)
and consider iρφρ−1(ρhρ−1). This is equal to ρφρ−1ρhρ−1ρφρ−1. Canceling the ρ−1ρ
and remembering h ∈ FixAutG(V )(iφ) we see we have ρhρ−1.

For the other direction we show that for h ∈ FixAutG(V )(iρφρ−1), ρ−1hρ ∈ FixAutG(V )(iφ).
If h ∈ FixAutG(V )(iρφρ−1) then ρφρ−1hρφρ−1 = h, which implies φρ−1hρφ = ρ−1hρ.
The left side of the last equality is iφ(ρ−1hρ) and is hence fixed by iφ, as was to be
shown. ♠

Recall the definitions of U and V in section 2.

Lemma 3: It is the case that |V/ ∼ | is finite.
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Proof: By Lemma 2 (iii) vertex groups in U are infinite cyclic or arise as the
restriction of automorphisms of G to vertex stabilizers in some JSJ tree.

Suppose V is a quadratically hanging vertex group. By Theorem 1.11 and [J]
fixed subgroups correspond to the fundamental groups of essential sub surfaces. Ho-
mological considerations imply that if the genus of the underlying surface is k then
such groups are free with rank at most 2k. Hence up to isomorphism there are only
finitely many.

If V is not a quadratically hanging subgroup consider the short exact sequence
described above. Since V is hyperbolic and is finite index in AutG(V ), AutG(V ) is
hyperbolic.

If φ ∈ AutG(V ) is not a torsion element then a theorem of Gromov [G] states that
FixAutG(V )(iφ) is virtually infinite cyclic. The intersection of a virtually infinite cyclic
group and the torsion free group Inn(V ) is contained in an infinite cyclic group.

If φ ∈ AutG(V ) is torsion then another theorem of Gromov states that there are
only a finite number of conjugacy classes of such elements. Hence it suffice to prove
our claim over one such conjugacy class. By Lemma 5.1 each conjugacy class of
AutG(V ) determines, by acting as inner automorphisms of AutG(V ), fixed subgroups
which are conjugate in AutG(V ). We are concerned with the intersection of these
subgroups with Inn(V ). Since Inn(V ) is normal in AutG(V ) the intersection of each
these fixed subgroups with Inn(V ) are isomorphic.

Hence up to isomorphism (not respecting conjugacy classes of possible edge groups)
there are only finitely many possibilities for vertex groups.

To finish the proof let V1, V2, ..., Vn be the JSJ vertex groups of G stabilizing the
vertices v1, v2, ..., vn of T . Suppose (H,L) ∈ V with φ being an automorphism of G
which produces this pair. If H stabilizes the vertex v ∈ G then there is a g ∈ G with
g(v) = vi for some i. It is then the case that the automorphism igφi

−1
g produces a

pair (H∗, L∗) ∈ V with H∗ stabilizing vi and (H,L) ∼ (H∗, L∗). Hence we only need
to look at the pairs in V where the fixed vertex group stabilizes one of the vi. Since
there are only finitely many such vi we show our claim for just one such vertex.

Suppose Vi is not a quadratic hanging subgroup. We induct on the number of
conjugacy classes in L. We note that if there are none we are done by the first
paragraphs of this proof. Let < g1 >,< g2 >, ..., < gm > be the JSJ edge groups
incident to Vi. So suppose we are looking at pairs (H,L) with L containing one
conjugacy class of an element in H. By constructing an new automorphism, as in
the last paragraph, we may assume that we are looking at all pairs (H,L) with
L containing some gi. It suffices then to show our claim for all pairs (H,L) with
L containing, say, gi. The set of φ ∈ AutG(Vi) fixing gi clearly form a subgroup
N ⊂ AutG(Vi). In fact this subgroup is virtually infinite cyclic but we will not need
this. If φ ∈ N and is non torsion then, as was seen above, FixVi(φ) is an infinite
cyclic groups containing < gi >. Since normalizers are infinite cyclic there are only
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finitely many such groups in a hyperbolic group. It is the case that there are finitely
many conjugacy classes of torsion elements in N . Suppose φ is a torsion element of
N and that ρ ∈ N . If < gi >∈ FixVi(φ) and < gi >∈ FixVi(ρφρ−1) then by Lemma
5.1 the automorphism iρ of AutG(Vi) provides an abstract isomorphism of FixVi(φ)
to FixVi(ρφρ

−1) which fixes < gi >. Hence the two pairs of V determined by φ and
ρφρ−1 are equivalent. If L contains n conjugacy classes then we again construct a
new automorphism so that L contains gi. By the case n = 1 there are only finitely
many such pairs (up to our equivalence) which contain gi and hence still only finitely
many if we enlarge L. This concludes our induction and the case that Vi is not a
quadratic hanging subgroup.

If vi is stabilized, in G by a quadratically hanging subgroup then by Theorem 1.11
the subgroup where an automorphism is periodic (if the fixed subgroup is not con-
tained in an infinite cyclic group) is realized by the fundamental group of an essential
sub surface. By [J] the fixed subgroup of a periodic automorphism is infinite cyclic,
or realized by the fundamental group of an essential sub surface. Which implies the
fix subgroup of an arbitrary automorphism is fundamental group of an essential sub
surface. If the fixed subgroup of some automorphism has a subgroup which stabi-
lizes such a vertex along with some adjacent edge groups then the underlying fixed
subgroup corresponds to an essential subsurface which contains the boundary curves
associated to those edge groups. It is the case that there are finitely many, up to
homeomorphism fixing those boundary curves, such sub surfaces. These homeomor-
phisms induce isomorphisms and we are done. ♠

Corollary: Suppose G is a torsion free hperbolic group which does not split over the
trivial or infinite cyclic group. There are only finitely many, up to conjugation, fixed
subgroups which are not isomorphic to the infinite cyclic group.

Proof: Again consider the above short exact sequence. If an automorphism is non
torsion (such as conjugation) its fixed subgroup is trivial or infinite cyclic. By lemma
5.1 there are finitely many fixed subgroup coming from torsion elements, where con-
jugation is in Aut(G). Since G is finite index in Aut(G) we see there are still only
finitely many such fixed subgroups up to conjugation in G. ♠


