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CONSTRUCTING FREE ACTIONS ON R-TREES

GILBERT LEVITT

Introduction and statement of results. This paper describes two constructions
leading to free group actions on R-trees. In the first one we start with an arbitrary
action (G, T), and we construct actions ofcertain quotients G/H on quotient R-trees
H. Among these actions, there is a "largest" free one, so that we can associate a
free action to (G, T) in a canonical way. In the second construction, we use pseudo-
groups of rotations of the circle constructed in [Le3] to get free nonsimplicial
actions of the free group of rank 3. The translation lengths of the generators may
be any triple of positive, rationally independent numbers. Both constructions use
measured foliations.
To introduce quotient actions, let G be a group acting isometrically on a metric

space (X, d), and H c G a normal subgroup. Consider X/H, the set of orbits of the
restriction of the action to H. The metric of X induce pseudodistancea on X/H,
given by dH(HX, Hy) infh.h, Hd(hx, h’y), and we let ./be the associated metric
space. Obviously, G/H acts isometrically on X’H.

In order to apply this to R-trees, we shall determine when XH is an R-tree,
assuming that X is an R-tree.

Let therefore H be a group acting on an R-tree T. Let ’: H R/ be the associated
length function ’(h) infxTd(X, hx). Recall that this infimum is always achieved;
in particular, ’(h) 0 if and only if h acts with a fixed point. (We then say h is
elliptic.) See the surveys [Shl], [Sh2], [Mo] for basic facts about R-trees.

Given c e R, with 0 < c < 1/3, say that the action of H (or the length function e)
satisfies condition (.) if the following holds: given h e H and e > 0, one can write
h h h2 with h, h2 6 H and

’(h) + (h2) < ’(h) + e
(*)

max(’(hl), :(h2)) < (1 c)(h) + e.

THEOREM 1. Let H be a countable #roup actin# on an R-tree T, with len#th
function . Then ’H is an R-tree if and only if : satisfies (.).

Remarks. The choice of c in (0, 1/2] is irrelevant, but the theorem would be false
with c > a (see Example 111.2). If TH is isometric to a subinterval of R, then :
satisfies (.) with c 1/2 (see Remark III.1).

if ’ I1, where z: H R is a homomorphism, then ’ satisfies (.) if and only if
(n) z.
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We shall see that condition (.) is always satisfied if H is generated by its elliptic
elements.

Here and in Theorem 2 below, the countability hypothesis may be removed.

COROLLARY. Let G be a countable group acting on an R-tree T, with length
function e. Let H G be a normal subgroup. If the restriction of the action to H
satisfies (.), then e(gH) infhne(gh) is a length function on G/H.

The action of G/H on the R-tree TH is free if and only if the condition

g q H = inf (gh) > 0 (**)
hH

is satisfied.
Given an action of G, with length function , it is easy to check that there is a

smallest subgroup Ho c G satisfying (**). This subgroup is normal, and it contains
all elliptic elements of G. It turns out that T’o is an R-tree.

THEOREM 2. Let G be a countable group acting on an R-tree T, with length function
e. Let Ho G be the smallest subgroup satisfying condition (**) qbove.

(1) The space T//Ho is an R-tree, and the action of G/Ho on 7/Io is free.
(2) This free action is as big as possible: if K G is a normal subgroup such that

G/K acts freely on some R-tree with a length function r satisfying r(gK) < (g) for
all g G, then K contains Ho.

COROLLARY. If G is generated by its elliptic elements, then ’G is an R-tree.

Here are a few examples.

Example 1. If G acts freely, then of course Ho { 1 } and e
Example 2. If e is the absolute value of a homomorphism z: G R, then

Ho ker z and e(gHo) e(g).

Example 3. Geometric examples are provided by measured foliations (see Theo-
rem 7 and Theorem III.7).

Example 4. If G acts simplicially, then Ho is the subgroup generated by the
elliptic elements (since e(G) c R is discrete). Bass-Serre theory [Se] implies that G
may be reconstructed from a graph of groups, i.e. a graph A (= T/G) with certain
groups and monomorphisms attached on vertices and edges. The free action given
by Theorem 2 is then isomorphic to the action of the fundamental group nx A (in
the usual, topological sense) on the universal covering A. In particular, G/Ho - nx A
is a free group.

Example 5. The group Ho may be strictly bigger than the subgroup generated
by all elliptic elements, even if G is finitely generated. Open up all 3 thorns of the
foliation ofP2 described in [AY], so as to get a foliation ofa compact nonorientable
surface E with 3 boundary components. For the associated action of nx E, it follows
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from [FLP, prop. 11.6 p. 81] that the subgroup generated by the elliptic elements
has index 2.

PRO’OSITION 3. Let G be a countable group acting on an R-tree T. If the action
is simplicial, the following are equivalent"

(1) G is generated by its elliptic elements.
(2) The free action associated to (G, T) is trivial (i.e. Ho G).
(3) /; is an R-tree.
(4) If > a lxl, with a > 0 and z: G Z a homomorphism, then z O.

For arbitrary actions, one simply has 1 =,. 2 = 3 =,. 4.

When G is finitely generated, one can go much further; in particular, (3) and
(4) are equivalent [Le4]. For now, let us just consider PL(G), the space of pro-
jectivized length functions on G. It is known to be compact [CuMo]. Theorem 2
associates to any ve e PL(G) a group G(e) G/Ho. Since G(ve) is finitely generated
and acts freely on an R-tree, it is a free product of free abelian groups and surface
groups by Rips’s theorem (see [GLP], [BF]). Now one may ask the following
questions:

(1) Consider the set of ve e PL(G) such that G(’) is free. Is it dense in PL(G)?
(2) Consider the set of e e PL(G) such that G(ve) is a free product of free abelian

groups. Does it contain a dense G in PL(G)?
The answer to question 1 is positive if simplicial actions are dense in PL(G), e.g.

if G is a free group or a surface group [Ski. A positive answer to question 2 would
mean that the Lyndon conjecture ([Ly], [Ch]) is "true generically" for finitely
generated groups.

The "only if" direction in Theorem I is easy (see Section III). To prove the other
results, we use codimension-one measured foliations on open manifolds M.
We shall associate to such an " a metric space T(r), the leaf space, made

Hausdorff, and give a criterion to decide whether T(’) is an R-tree (Theorem III.3).
Using the measure, we can define the -length II[/ll of any g e nM, as the

infimum of the measures of closed curves representing g as a free homotopy class.
The connection between actions on R-trees and measured foliations now comes

from the following result. Say that x T is an endpoint if x does not belong to the
interior of a nondegenerate segment. Note that T has no endpoint if some group
acts on T minimally (there is no invariant subtree).

THEOREM 4. Let T be a separable R-tree whose set of endpoints is countable. Let
H be a countable group acting on T, with length function . For any n > 3, there exists
a (nonsingular) measured foliation on an n-dimensional manifold M and an epimor-
phism p.nM --, H, such that:

(1) / is isometric to (’);
(2) T is H-equivariantly isometric to (n), where ’ is the pullback of 3 to the

normal covering Mn of M defined by p;
(3) ker p is generated by elements of -length 0;
(4) (h) inftp-lth Iltll for all h H.
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In particular (see Remark 11.4 for a stronger statement), we have the following
corollary.

COROLLARY. Given T as in Theorem 4, there is a measured foliation (M, ) such
that T() is isometric to T and rclM is generated by elements of -length O. m

Our second construction will show the following.

THEOREM 5. Let F3 be the free group of rank 3. Given three positive, rationally
independent numbers , , , there exists a free nonsimplicial action of F3 on an R-tree
such that , , are the translation lengths of the generators.

Remarks. It is known [Ha] that every (minimal) free action ofF. is topologically
conjugate to a simplicial action (polyhedral in the sense of I-Sh2]). The actions we
obtain are not polyhedral because all orbits are dense. Our construction can be
generalized to give uncountably many nonpolyhedral actions of free groups of
arbitrary odd rank.

Using automorphisms of free groups, Bestvina and Handel have constructed a
countable family of nonsimplicial free actions of free groups (see [Sh2]). The length
function associated to any of their actions takes its values in a finite algebraic
extension of Q.

To prove Theorem 5, we use measured foliations with Morse singularities on
closed manifolds M with dim M > 3 (see Section I). Given (M, ), let E’ be the
normal subgroup of rrlM generated by those free homotopy classes that can be
represented by loops contained in leaves and having trivial holonomy. (We shall
distinguish between "loops contained in leaves", which may not pass through
singularities, and "loops tangent to -", which may. The quotient rM/ is the
fundamental group of Haefliger’s classifying space for .; see i-Le2, pp. 721-722].)

Let M(Av) be the covering corresponding to . The pullback (Av) of. to M()
can be defined by a Morse function f" M R. We shall show the following
theorem. (See Theorem IV.1 for a more detailed statement.)

THEOREM 6. Let (M, ) be a Morse measured foliation on a closed manifold. The
leaf space of (Za), made Hausdorff is an R-tree (c,) whose points are in one-to-one
correspondence with connected components of level sets f-(c).
Now let - be the pullback of to the universal covering M, and T() its leaf

space, made Hausdorff. It is known that T(-) is an R-tree [GS], but no similar
description of its points is known in general (see Section IV).
Theorem 6 readily implies the following corollary.

COROLLARY. If every l..oop tangent to is null-homotopic in M, then the action

of zM on the R-tree T() is free.
Remark. We shall be concerned primarily with the case dim M > 3, but similar

(indeed simpler) techniques apply to measured foliations on surfaces in the sense of
Thurston ([Th], [FLP]). One can thus prove that most surface groups act freely
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on R-trees (a result of [MS]), using the point of view of foliations rather than
laminations. Note that measured foliations with all leaves dense can be obtained
by taking branched coverings of the foliation described in [AY], or (on orientable
surfaces) by suspending irreducible irrational interval exchange transformations (in
the sense of [Ke]).

To get a free nonsimplicial action of F3 on an R-tree, it now suffices to con-
struct a Morse measured foliation (M, ) such that M is a closed manifold with
7r M

_
F3, every loop tangent to - is null-homotopic, and every leaf of" is dense.

(This guarantees that the resulting free action has all its orbits dense; in particular,
it is not simplicial.) This is obtained by simply "suspending" pseudogroups of
rotations constructed in [Le3, th6or6me 1].
More generally, any pseudogroup of rotations F on the circle gives rise to a free

action of a group G(F). Theorem 7 will lead to a presentation of G(F) by generators
and relations (see Remark IV.4).

Let us return to the situation of Theorem 6. Let be the normal subgroup of
7riM generated by the free homotopy classes that contain loops tangent to
(possibly passing through singularities). The above corollary dealt with the case
when { 1}_ In general, the leaf space (made Hausdorff) on the covering corre-
sponding to . is an R-tree T(), and we shall show the following theorem.

THEOREM 7. Let (M, ) be a Morse measured foliation on a closed manifold. If
o is transversely orientable (i.e. if can be defined by a closed differential 1-form),
then rM/ acts freely on the R-tree ( c).

This action is the action associated to (M, (’)) by Theorem 2. Note that
tt M/.’ is a free product of free abelian groups and surface groups (Rips), while
rM/." is a free product of free abelian groups [Le2, th6or6me 1]. There are
examples of nonorientable foliations for which Theorem 7 fails.

Acknowledtements. This paper owes a lot to many talks with F. Paulin, as well
as to conversations with P. Greenberg and e-mail exchanges with R. Skora and
F. Rimlinger.

I. Preliminaries on measured foliations. Let Mn be an n-dimensional smooth
manifold without boundary. A Morse measured foliation on M is a codimension-
one foliation with Morse singularities, equipped with a smooth, holonomy-invariant,
transverse measure with full support. Equivalently, the pullback " of " to the
universal covering is defined by a Morse function j deck transformations acting
by f o e()f + a(), with e() +__ 1 and a() R. A leaf of " will always be a
leaf of the nonsingular foliation ’* induced on M* M Sing -.

Given (M, ,), any path M has an ’-length I1, defined as the total mass
of the measure induced on ,. For 6 M, let I111 be the infimum ofthe ’-lengths
of all closed curves representing # as a free homotopy class; of course, IIll depends
only on the conjugacy class of . If no confusion is possible, we shall drop the
reference to ’.
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We define a metric space () as follows (leaf space of made Hausdorff). Given
x, y in M, let d(x, y) be the infimum of the -lengths of paths from x to y. This
defines a pseudodistance on M. (We may have d(x, y) 0 for x :/: y, for instance,
if x and y are on the same leaf.) Identifying points at distance 0 from each other, we
get the required metric space (). In particular, () is always an R-tree [GS].
Note that ntM acts on T(ff), with length function O-- I111.

Allowing singularities will be crucial for the proof of Theorem 5 since we want
to work on closed manifolds. Recall that very few closed manifolds support non-
singular measured foliations: M (or its 2-sheeted covering making - transversely
orientable) must fiber over S [Ti].

Let s be a critical point of a Morse function O. If s has index different from 1 or
n 1, there exist arbitrarily small neighborhoods U such that all level sets of 91U
are connected. This is not true if s has index 1 or n 1. Assuming n > 3, the level
set of s then consists of {s}, and of 2 sinoular half-cones which get separated on
nearby levels on one side (see [Lel, 1.4]). This explains why the important singu-
larities of will be those of index 1 or n 1. (Note that singularities of have an
index, well-defined up to replacing p by n p.)

II. From trees to foliations. This section is devoted to the proof of Theorem 4.
We are given a separable R-tree T with countably many endpoints, equipped with
an action ofa group H. We are looking for a foliation ff with 7() isometric to TH.
We shall not treat the (not so trivial, but useless) case when T is a point. The

assumptions made on T guarantee that T may be covered by countably many
segments (cf. [MNO, Prop. 1.6]). More precisely, we have the following lemma.

LEMMA II.1. Let T be as in Theorem 4. Assume T is not a point. There
is a bi-infinite sequence of real numbers ...< a-2 < a_x < ao < a < with

limlnl-+oo lal +oo, and a continuous surjective map q: R T, with the followin9
properties"

(1) for all i, the restriction of q to Az [a, ai+-I is an isometry onto some segment

Bc T;
(2) for all i, j, the intersection Bi Bi is either empty or a nondegenerate segment

(but not a point).

Proof. Set ao 0. We define q on R+ and then extend it by q(-t) q(t). Let
(x)s be a dense subset of T containing all endpoints. Define a and q by requiring
that q map [a,, a+] isometrically onto the segment _xx+] T. We get a
surjective map q: R T that satisfies condition (1).

It is then easy to modify q so that it also satisfies (2). This is done inductively, in
such a way that the finite subtree Tn q([ao, an]) has the following property: for
every vertex v of Tn, there is an edge e v such that every B (0 <i< n- 1)
containing v also contains e. One may have to add subdivision points in the process.
We leave details to the reader.

Note that, since q is onto, every segment in T is contained in a union of finitely
many Bi’s.
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Let S be the set of s (i, j, h) e Z x Z x H such that hBi c B is a nondegenerate
segment; denote h tr(s). Given s S, let Is (resp. Js) be the nondegenerate closed
subinterval ofAi (resp. As) consisting of all x e A such that hq(x) Bs (resp. all y e As
such that q(y) hB). Let Ys: Is --* Js be the isometry such that q o s h o q.
We have thus obtained a countable family (’s)ss of partial isometrics of R. We

now show how to recover H from it. (This will be used for the third assertion of
Theorem 4.)

In the free group F(S), take as relations all words sl"’" s, such that tr(sl).., tr(s,)
1 and there exists x R with s, s,(x) defined and equal to x. Let : F(S) F(S)/Ns
be the corresponding quotient homomorphism. The homomorphism Ps: F(S) H
sending s to tr(s) factors through s: F(S)/Ns n.
LEMMA 11.2. The homomorphism s: F(S)/Ns H is an isomorphism.

Proof. Given e Z and h H, there is a j Z such that (i, j, h) S. In particular,
s is onto. Also note n(i, j, h)n(j, i, h-) 1 for all (i, j, h) e S. The injectivity of s
is proved in three steps:

1. If tr(s) 1, then n(s) 1 in F(S)/Ns.
2. More generally, n(s) depends only on tr(s).
3. If tr(s)= tr(sl)o’(s2) then 7(s) 7(sx)7(s2).

Proof of 1. It is by contradiction. Among all s S with tr(s) 1 and n(s) 1,
choose one for which < j and j- is minimal. By minimality, q([a+l, as]) is
disjoint from q(ls) q(Js); in particular, q(a/) and q(as) are in the same component
of T q(Is). Let x be the right endpoint of Is. We know x :/: a+. Similarly, let y # a
be the left endpoint of Js. Since q([x, a+])c q([as, y])= q(x)= q(y), the points
q(a+) and q(as) are in distinct components of T q(x), a contradiction.

Proof of 2. Let s (i, j, h) and s’= (i’, j’, h) be in S. First, assume i= i’ and
consider the segment hB. Choose a finite number of nondegenerate .segments
C(j) hBic Bs, (1 < < p), with j j, j, j’, and C(jz)c C(j,+) # . Since
n(i, j+, h) n(jl, j+, 1)n(i, jr, h), we get n(i, j, h) n(i, j’, h). Given i, let j be
such that Bs c hB and B c hB+ are nondegenerate segments. Then n(i, j, h)=
n(i + 1, j, h), so that 2 is proved.

Proof of 3. Choose any i. Choose j such that O’(s2)B n is a nondegenerate
segment C. Finally, choose k such that tr(s)C c Bk is a nondegenerate segment.
Then n(i, k, tr(s)tr(s2)) t(j, k, tr(sl))(i, j, tr(s2)).

We shall now associate a measured foliation - to the system (s)ss. Start with
R R-1 x R (n 3), with the measured foliation -o given by the projection
p: R --. R. Using p, we lift the subintervals Is, Js of R to intervals transverse to -o.
Thanks to the R"-t factor, we can place all those intervals far away from each other.
Then perform foliated connected sums as in [AL, pp. 144-145]. Consider the

simply connected manifold (with boundary) Mt obtained by removing for every
s e $ the interior of a thin ellipsoid Bl(s) (resp. BJ(s)) having Is (resp. Js) as its big
axis. Then glue tBl(s) to tBJ(s) by a diffeomorphism O(s) such that p o O(s) s o p.
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We get a manifold M without boundary, and the foliation ’o induces a measured
foliation on M, with Morse singularities of index 1 or n 1 coming from the
endpoints of the intervals Is,

Since n > 3, leaves of are in one-to-one correspondence with orbits ofH on T
(provided we identify leaves containing two singular half-cones issuing from the
same singularity). We shall show that (M, ) is indeed the desired foliation. (If one
insists on getting a nonsingular foliation, one can simply remove the singularities
from M; since n > 3, this will not change the fundamental group.)

Clearly, n1M is isomorphic to the free group F(S). We fix an explicit identification
,: Tg M F(S) as follows.

Let 71, 7k be paths in M1, such that the endpoint fl of , is in some 6BJ(s)
(1 < < k 1), the origin i of Vi is in 6BI(si_) (2 < < k), and fli O(si)(i+) for
1 < < k 1. This data represents a path ;1"’" Vk in M. We shall say that such
a is a 9ood path from 1 to ilk. Of course, any path in M can be approximated by
a good path.

For a good path , define 2()= Sl""Sk- F(S) and p()= a(Sl)’"a(Sk_).
Restricting to (good) loops, we get an isomorphism 2: nx M F(S) and an epi-
morphism p Ps 2" ZlM H. (All this is independent of a choice of basepoint
since M1 is simply connected).
By Lemma 11.2, the subgroup N ker p c rIM is generated by elements of

-length 0, so that assertion 3 of Theorem 4 is proved.
Now let p" M R be the restriction of p: R" R, and q q o Pl" Mx T. If, is a good path, its -length is the sum of the total variations of Px along the V’s.

Also note the equalities q(fl) a(s)q(+l), < < k 1.

LEMMA 11.3. For a, fl M1 and h H, we have d(q(a), hq(fl)) inf{17l; y good
path from to fl such that P(7) h}.

This lemma easily implies assertions 1 and 4 of Theorem 4. Proving asser-
tion 2 is a little less immediate, but we shall not give details as it is not used in the
sequel.

Remark 11.4. The proof will show that the infimum is achieved. For the Morse
measured foliation induced on the covering Mn, this means that the pseudodistance
between two points is always realized by a path.

Proof of Lemma 11.3.
Clearly,

Let be a good path from 1 to flk fl, with p(y) h.

k k k

I1- I,1 > Ipx()- Pl(fl)l > d(q(a), qx(fl))
i=1 i=1 i=1

k

d(a(s1)"" 7(Si_l)ql(oi), r(Sl)" (Si_l)ql(fli)
i=1

> d(q(a), hq(flk)).
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Conversely, we find a y with I1 d(ql(), hq(fl)). It clearly exists if qx()=
hqx (fl)(first check the case h 1). In general, subdivide the segment [ql (), hql (fl)]
by points x q(), Xk+ hq (fl), so that each [xi, x+] is contained in some
Bj,. Define st (j+, j, 1) for 1 < < k 1 and construct a good path y’ Yx ""Yk
such that q maps each Yi isometrically to [xi, xi+x]. Clearly, ly’l d(qx (), hql (fl))
and p(’) 1. The existence of now follows since the endpoints u and v of y’ satisfy
q (u) q () and q (v) hq (fl). m

III. Is the leaf space an R-tree? In this section we shall use Theorem 4 to prove
Theorems 1 and 2 and Proposition 3, but first we show the "only if" direction in
Theorem 1" if TH is an R-tree, then e satisfies (.).
Assume TH is an R-tree and let re" T TH be the projection. Fix h H. There

is nothing to prove if e(h) 0; so assume e(h) > 0. Identify the translation axis Ah

of h with R, so that h acts by x- x + e(h). Consider points x i(h)/3, 0 < < 3.
Note that z(x3) C(Xo). Since r(l-xi, xi+]) contains the segment I-r(xi), n(xi+)],
there exist points yi (1 < < 3) with x_ < y < x and r(yl) r(y2) n(Y3). At
least one couple (j, j’) will satisfy < [yj y.[ < 2

5, and we take for hi an element
of H sending y very close to y,.
Remark III.1. Suppose TH is isometric to a subinterval of R. View n

as a real-valued function. By the intermediate-value theorem, the function
rc(x + e(h)/2) 7r(x) vanishes for some x Ah. This shows that e satisfies (.) for
c 1/2. The converse holds for minimal free actions of finitely generated groups
[Le4].

Example 111.2. This example shows that c cannot be taken greater than 1/2 in
Theorem 1. Let Y be the finite simplicial tree having three vertices v, v2, v3 of
valence 1 and one vertex v of valence 3. Make it into a graph of groups by setting
G(v) Z/2Z and G(v) { 1 } (all edge groups are trivial). The corresponding action
of Z/2Z Z/2Z Z/2Z satisfies (.) if and only if c < 1/2.
Now let be a (nonsingular) measured foliation on a manifold M without

boundary. Let C be a closed curve in M. We shall always assume that C is oriented,
and in general position with respect to -: C is transverse to except at finitely
many points where simple tangencies occur. We let CI be the o--length of C, and
Ilfll the infimum of IC’l for C’ freely homotopic to C (i.e. IICII Ilgll, if g nM is
represented by C).

Given p, q C, the orientation of C allows us to distinguish two arcs pq and qp;
arcs will always be closed arcs. The distance on C between p and q is the --length
of the shorter of the two arcs pq and qp. Given four points p, P2, P3, P4 in that
order on C, we say that two points x, y C are on opposite arcs if one is on the arc

PP2 and the other on P3P4, or if one is on P4P and the other on P2P3.
Say that x, y e M are -equivalent if d(x, y) 0.

THEOREM 111.3. Let be a measured foliation on a manifold M and c (0, 1/2].
The followin9 conditions are equivalent:
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(1) T(#-)is an R-tree.
(2) Given four points on a closed curve, there exist -equivalent points on opposite

arcs.
(3) Every closed curve C c M contains -equivalent points whose distance on C

is at least c CII,
(4) Given xM and e > O, there exist , 2 nM such that #g2 and

llgx +/Ig2 < IIg +

max(llgx II, IIg211) < (1 c)llgll + .
Remarks. The implication (2)=(1) is known: it is used in l-Pa, proof of Prop.

4.6] to prove that 7() is an R-tree if M is simply connected (a result of [GS]).
Another equivalent condition is that T() contains no embedded circle.

The rest of this section is organized as follows. First, we prove a geometric result
(Lemma III.4), and we deduce Theorem 2 and Proposition 3. Then we prove
Theorem III.3, the main steps being (4) = (3) and (3) =:- (2). Finally, we use (4) = (1)
to show Theorem 1.

Replacing M by M x R’ with the product foliation if necessary, we may assume
that dim M is large, so that we need only consider smoothly embedded curves and
surfaces.
We shall use (singular) foliations induced by on compact surfaces P c M.

We always assume general position, so that f9 has only Morse singularities (centers
and 4-prong saddles) and 6P is transverse to (q except at finitely many points. Since

is a measured foliation, Poincar6 recurrence (see [FLP, expos6 5-1) implies that
all but finitely many leaves leaving diP must return to 6P.

LEMMA 111.4. Let , be a measured foliation on a manifold M. Let C M be a
closed curve, and P a compact orientable surface of genus 0 whose boundary consists

of C and (possibly) other curves C1, Ck. Given four points on C, there exist points
x, y C on opposite arcs such that d(x, y) < 1/4lCil.

Remark. This lemma is implicit in [Pa] for P a disk.

Proof of Lemma 111.4. Let (9 be the foliation induced on P. In this proof,
"distance" will always refer to d,. Let pl, P2, P3, P4 (in that order) be the points
given on C. We may assume that the measure of the set of points of the arc PxP2
whose leaf reaches C is at most 1/4 ICl and that no regular leaf of c joins PP2
to P3P4.
Among all points of PaP2 whose distance to P4Px (resp. P2P3) is 0, let q (resp. r)

be the one closest to P2 (resp. pl). If r is between p and q, the distance between
P4Px and P2P3 is 0 (because P has genus 0). If not, a regular leaf meeting qr must
either return to qr or reach some C. (It cannot reach pxq or rp2, again because
of genus 0.) It follows that the distance between q and r is at most 1/4 Cl, so that
da(P,Px, P2Pa) < d,(PgPl, P2P3) < 1/4lCl. 1
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COROLLARY 111.5. Let be a measured foliation. Suppose that, given rlM
and e > O, one can write tl k with IItll < e. (This happens for instance if
zrlM is generated by elements of -length 0.) Then T() is an R-tree.

Proof. We check condition (2) ofTheorem 111.3. (Recall that it is known to imply
condition (1).) Consider four points on a closed curve C. Given e > 0, let P be as in
Lemma 111.4, with Cl < . By Lemma 111.4, there exist points on opposite arcs
that are e/4-close for d. Letting e go to 0, an easy compactness argument then yields
--equivalent points, m
COROLLARY 111.6. Let H be a countable group acting on an R-tree T with length

function e. Supposethat, given h H and e > O, one can write h hl"’hp with
e(hi) < e,. Then H is an R-tree.

Proof. Recall I-AB, Theorem 3.17] that a connected metric space (X, d) is an
R-tree if and only if, given any four points xi, the numbers d(xi, xj) satisfy a certain
inequality (known as 0-hyperbolicity). Replacing T by the smallest H-invariant
subtree containing four given points, if necessary, we may therefore assume that T
satisfies the hypothesis of Theorem 4.

Apply Theorem 4 to the action of H. We claim that the corresponding foliation
satisfies the hypothesis of Corollary III.5.
Given ZrlM and e > 0, we can write p(t) hi"’" hp with h

Using assertion (4) of Theorem 4, choose t p-(h) such that ]]till < e. Then
define n by t...tpn. By assertion (3) of Theorem 4, it is a product of elements
of -length 0, so that has the required decomposition.

It follows that 7(), and hence also TH, is an R-tree.

Proof of Theorem 2. First, we show the existence of a smallest subgroup Ho
satisfying (**). Say that a subgroup H c G is a (**)-subgroup if it satisfies (**). Any
intersection of (**)-subgroups is a (**)-subgroup. Any conjugate of a (**)-subgroup
is a (**)-subgroup. It follows that Ho exists and is normal.

Let H’ consist of all h e Ho such that, for every e > 0, one can write h hl"’hp
with hi e Ho and re(hi) < e. One easily checks that H’ is a (**)-subgroup, so that
H’ Ho. Corollary 111.6 now implies that T’o is.. an R-tree.

Since Ho satisfies (**), the action of G/Ho on 7/o is free.
To prove assertion (2) of Theorem 2, simply note that K is a (**)-subgroup since

g K = 0 < r(gK) < infkr(gk).

Similar arguments may be applied directly to any measured foliation (M, if). One
gets the following description of the free action associated to the action of ztM
on T().
THEOREM 111.7. Let be a measured foliation on a manifold M. Let Ho c rtlM

be the smallest subgroup such that g q Ho infhUo [[ghl[ > 0. Then nM/Ho acts
freely on the R-tree (o), where o is the pullback of to the covering of M
corresponding to Ho.

Proof ofProposition 3. We first show (1) (2) (3) (4) for arbitrary actions.
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(1) =:, (2) is clear since Ho contains all elliptic elements.
(2) =:, (3) follows from Theorem 2 since T’o is an R-tree.
(3) =,, (4) is a consequence of the "only if" direction of Theorem 1: condition (,)

prohibits an inequality of the form/’ > alvl, with a > 0 and a nonzero homo-
morphism to Z.
Now we assume that G acts simplicially, and we prove (4) = (1). Example 4 (before

the statement of Proposition 3) gives an action of G/Ho - rex A on A by covering
transformations. If (1) does not hold, then A is not a tree and the length function
of this action is bounded below by Iol, with Zo: G/Ho Z an epimorphism.
Composing o with the projection G G/Ho, we get an epimorphism : G-- Z
such that > I1, and (4) does not hold.

Remark. For nonsimplicial actions, all three implications (1) =:, (2) = (3) =,, (4)
admit counterexamples. Both (1) =:, (2) and (2) = (3) admit counterexamples with G
finitely generated.

Proof of Theorem 111.3. First, assume that T(’) is an R-tree and consider three
points q:, qz, q3 (in that order) on an oriented closed curve C. Let z be their images
in (-). Since the segments [Z1Z2] [Z2Z3] [Z3Z1] have a nonempty intersection,
there exist -equivalent points p, q, r on q, q2, q2q3, and qaq. If furthermore ql,

q2, qa are equidistant on C, two of the points p, q, r will have distance at least ICI/3
on C.

Using these remarks, it is easy to see that condition (1) implies the others. The
proof of Theorem III.3 now proceeds in two steps (recall that (2) (1) is known).
First we show that, if condition (4) holds for some c > 0, then condition (3) holds
for some c’(=c/16). Then we prove (3) = (2).

Proof of(4) =:, (3),. By compactness it suffices, given C and e > 0, to find points,
e-close for d, whose distance on C is >c11CII/16.

Let # rM be represented by C. We may assume that I111- IICII is strictly
positive, and we limit ourselves to e < c1111/4. Choose > 0 with di < e/4 and note
+ i < c1111/3. Define# and #2 using condition (4) and represent each 0 by a curve
C with fzl < IIzll / . We now consider the foliation f9 induced on a pair of pants
bounded by C w C w C2.
We distinguish three cases. First, assume there are regular leaves of going from

C to C (i 1, 2). Let I (a, bz) be the smallest open interval in C meeting all regular
leaves from C to C, such that any two such leaves are isotopic as arcs from I to

Ci. (Of course, a b2 and/or b a2 is possible.)
Let A C be the limit, when a 6 I tends to a, of the other endpoint of the leaf

through a. Note that a and A are fg-equivalent. (They can be joined by a union
of singular leaves, but we do not need this.) Define A2, B, B2 similarly. Let V be
the subarc of C between A and Bz that does not meet the leaves from C to C.
We claim I1 < . We give the proof for ,. A regular leaf of (g meeting ’1 is either

a nonessential arc from V to Vl, or an arc from V to ’2. These two types of leaves
meet Vl in sets of measures 01 and 012 respectively, with I1- 0xx + 0x2. The
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inequality Ixl < e now follows from 011 < 6 < e/4 and

I1011 ICll + IC21- 2012 I1011 + 110211 + 2a 202 II011 + + 2a 20,2.

Since al and bl are e-close, we are done unless one of the arcs I1, I2 is smaller
than c11CII/16, say Illl < c11CII/16. Using the inequalities

llgll Ib2all + Ilxl + Ibla21 + IC21

C IIg + a (1 c) llg + e + a,

we then get Ib2all + Ibla21 cllgll/2 since e + a < cllgll/3.
Assume for instance Ibla21 > c1111/4. Consider a nullhomotopic simple closed

curve Co consisting of bl a2, 72, b2al, 71, together with very small arcs joining a2 to
A2, B2 to b2, al to A1, B1 to bl. Let Pl, P2, P3, P, be points on bla2 with Pl bl
and IPP+I cllgll/16 (j 1, 2, 3).

Applying Lemma 111.4 to these four points on Co, with P a disc, we get
-equivalent points on opposite arcs. One of these two points may.fail to be in C,
but then it is e-close to bl or a2. This completes the proof in the first case.
The second case is when there are regular leaves from C to C1, but not from C

to C2 (or vice versa). Define 11, al, bl, A 1, B1, 71 as before. Note that a leaf going
from 71 to itself cannot be an essential arc in P since this would lead to

Ilgll ICxl Ilgxll + a (1 c)llgll + + a,

contradicting the assumption e + 6 < cll011/3. The same argument as before then
shows I11 < and IC21 < e.

Let J1 be the complement of 11 in C. Since Ilgll < IJxl / ICll and ICll
(1 c)llgtl / / , we get IJll > c11CII/2. On Jx, choose points
with Ipp/ll > c11CII/8 and consider Co consisting of J1, 71, and small arcs from a
to A and from B1 to bl. Then apply Lemma 111.4, with P the annulus bounded by
Co and C2. Since a point of Co not in C is e/2-close to al or bl, we get points on C
that are 3e/4-close, while their distance on C is at least c11CII/8.

Finally, assume that no regular leaf goes from C to C1 w C2. Arguing as before,
one shows first that a leaf going from C to itself cannot be essential and then that
Cll and IC2l are less than e. Now simply apply Lemma 111.4, with P the pair of
pants.

Proof of(3) (2). Given e > 0 and an integer n N, we shall prove the following
statement: given four points on a closed curve C with Cl < nc, there exist points
x, y on opposite arcs such that d(x, y) < (1 2-")e. This statement implies condi-
tion (2) by the usual compactness argument.
We fix e and argue by induction on n (the case n 0 being trivial). By Lemma

111.4 (applied to an annulus), the result is true for IICII < 2. Assuming IICII > 2,
consider -equivalent points q, r e C whose distance on C is at least 2ce.
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If they belong to opposite arcs, there is nothing to prove. If not, one of the
arcs qr or rq contains at most one of the four given points. Consider the curve
C’ we get from C after replacing this arc y by an arc y’ between q and r, with
lY’I < min(2-he, ce). If one of the four given points belongs to y, replace it by any
point of y’, so as to get four points on C’.
Note that IC’l < ICI- I1 + I’1 < nce- 2ce + ce (n 1)ce.
By the induction hypothesis, there exist points x’, y’ C’ on opposite arcs with

d(x’, y’) < (1 2-n/l)e. Returning to C, we get points x, y on opposite arcs with
d(x, y) < (1 2-+1)e + I1 < (1 2-)e. 1

Let N c n M be a normal subgroup generated by elements of ’-length 0. To
prove Theorem 1, we need to know that T() is an R-tree under the following
hypothesis (4 mod N): given g 1M and > O, there exist gl, 2 1M such that
g(glg2)-1 . N and

llgx +/Ig2 < IIg +

max(lla II, IIg211) < (1 c)llgll + .
This condition is weaker than condition (4) since we only require 2 mod N.
The proof is an extension of the one given above, replacing Ilgll (and similarly

IICII) by I111 infN IInll. Choose C and e and let g nlM be represented by C.
Write g gig2 mod N, with

max(llgx II, IIg211) < (1 c)llgll + .
Then choose Ci representing gi mod N, with Cl < Ilgzll + , and consider a

compact surface of genus 0 bounded by C w C1 w C2 and possibly a family of other
curves with very small total length. Arguing as above, one gets -equivalent points
whose distance on C is at least c’llCIl. The proof of (3) = (2) then applies, using
Cll instead of C II.
Proof of Theorem 1. We now show that TH is an R-tree if e satisfies (.).
As in the proof of Corollary 111.6, we may assume that T satisfies the countability

hypotheses ofTheorem 4. Suppose that satisfies (.). Apply Theorem 4 to the action
ofH on T and let N ker p c n M. Using assertion (4) of Theorem 4, one checks
that r satisfies condition (4 mod N). It follows that 7(’), and hence also TH, is
an R-tree. m

IV. Measured foliations on compact manifolds. In this section we first prove
Theorem 6, and then Theorems 5 and 7.

Let (M, ) be a Morse measured foliation, with M closed and dim M > 3. Let
Z’, ’, M(Aa), ’(Z’), f be as in the introduction. Let d. be the pseudodistance
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defined by (Sa) on M(&a) and let T(Za) be the associated metric space. By
Corollary 111.5, we know that T() is an R-tree. Finally, define J rlM/ and
let @: rlM --* J be the canonical epimorphism.

THEOREM IV.1. Let (M, ) be a Morse measured foliation, with M closed.
(1) Given x, y M(’), there exists a path 7from x to y such that Ilte de(x, y).
(2) Points of T(q) are in one-to-one correspondence with connected components

of level sets f- (c).
(3) Given j J, there exists a closed curve C c M such that O([C])= j and
Cl info ,-,()Ilgll .
(4) If g rClM and IIgll 0, then g

Theorem 6 is equivalent to assertion (2) of this theorem.

Proof of Theorem IV.1. The important thing to prove is (1)." assertions (2), (3),
and (4) then follow easily, using the fact that inf #(ze)d(t, jr) is achieved.
For clarity, we introduce M(&f)*= M(&f)- Sing (A) and the nonsingular

foliation -(&f)* induced on M(e)*. Since 7rl (M(Aa)*) - rc (M(Aa)) - Lf is gener-
ated by (free homotopy classes of) loops tangent to (’)*, every leaf of (A)*
separates M(Aa)* into two components. (In other words, the leaf space of (&f)* is
a simply connected non-Hausdorff one-manifold.)

LEMMA IV.2. Let a, b, c be real numbers, with a > 0 and b +_ 1. Let u and v be
smooth maps from I-0, a] to M(.e)* such that (f o u)(r/) (f o v)O1) bl + c for all
rl. Suppose uO1) and vO1) belon# to the same leaf of ,(0)* if 1 > O. Then u(O) and
v(O) belon# to the same connected component off-(c).

Proof. Choose a J-invariant Riemannian metric on M(). On M(.)*, let q9 be
the partially defined flow of the vector field X (grad f)/llgrad fll . (Note that
df(X) -= 1, so that q9 preserves ff(.)*.) We may assume that b + 1, c 0, and
the images of u and v are contained in orbits of X.

Let a be a smooth path joining u(a) and v(a) in their leaf. We use qg-t to push a
onto neighboring leaves. If qg-a is defined on a, the lemma is clear. Ifnot, let to s (0, a]
be the smallest for which o_t(a) is not defined.
When approaches to from below, the path qg_t(a has a limiting position a’ in

M(): a’ is a path tangent to ff(), passing through one or several singularities of
index 1. (Singularities of index > 1 can be avoided by slightly moving o, and
singularities of index 0 cannot occur.)

If to a, the result is proved. If to < a, let s (resp. s’) be the first singularity one
encounters when following a’ from u(a to) (resp. v(a to)) and let c (resp. cC) be
the singular half-cone (see Section I) along which one arrives at s (resp. s’).
By assumption, and ’ belong to the same leaf L of -(Av)*, not just to the

same component off-(a to). This allows us to replace the part of a’ between s
and s’ by a path c(, cC) L connecting c to ’, and keep pushing. If we can find
some e > 0, independent of and c,, such that o_ is defined on c(, ’), then we
can push until we reach f-(0), thus proving the lemma.
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Since we are working on the covering corresponding to , the projection of a
leaf of -()* onto its image in M is at most 2-to-1. By compactness, has only
finitely many singularities. It follows that the couples (cg, ,) that may occur fall into
finitely many orbits under the action of the group of covering transformations,
whence the existence of e. m

Remark. Similar arguments were used in [Lel, proof of lemma 11.3] and [Le3,
proof of lemma VIII.I]. Also note the resemblance between Lemma IV.2 and the
notion of segment closed used in [Rim].

To prove assertion (1) of Theorem IV.l, join x to y by a piecewise smooth path
:, such that on each piece f o is either constant or strictly monotone. Let p be the
number of pieces and let k < p be the number of U-turns: k is the smallest integer
such that the domain of z can be subdivided into k + 1 intervals, with f o weakly
monotone on each interval.
We argue by induction on (k, p) with the lexicographic order. If k 0, then f o

is weakly monotone and de(X, y) < Ilte If(x)- f(y)l < d.(x, y), so that the
result is true. If k > 1, choose z between x and y with k minimal, and consider
a U-turn. Fix al < a2 < a3 < a, in the domain of , such that f o z is strictly
increasing (resp. decreasing) on I-a1, a2-1, constant on [a2, a3], strictly decreasing
(resp. increasing) on [aa, a,], and [al, a2], [a3, a,] are pieces of z. Say for instance,
If(a) f(a2)[ < If(a3) f(a4)[.
The set Z c [al, a2-1 consisting of all points z such that the leaf of ’()*

containing z(z) meets z([a3, a4]) is open and connected (because every leafof(.")*
separates M()*). Let ao be its lower bound (ao a2 if Z ). By Lemma IV.2,
the point z(ao) can be joined to a point of z([a3, a,]) in a level set of f.

If ao a, we can replace z by a path with less pieces and no more than k U-turns.
Ifa < ao < a2, minimality of k implies that the image of z meets the leaf containing
z(ao) exactly once, so that (the closure of) this leaf separates x from y. We then have
d.(x, y) d.(x, z(ao)) + d.(z(ao), y), and the result follows since z(ao) can be
joined to x and y by paths with strictly less than k U-turns. A similar argument
works for ao a2.

Remarks. This proofwas inspired by an argument usedjointly with P. Greenberg
to prove the following. Let V be a Riemannian simply connected non-Hausdorff
one-mainfold, and d the natural pseudodistance on V; if d(v, v’) 0, there exists a
sequence v0 v, 01, vk V’ such that every neighborhood of v meets every
neighborhood of v+. (Note that Lemma IV.2 may be interpreted as saying when
two points in the leaf space of’()* do not have disjoint neighborhoods.) It seems
quite likely that the metric space associated to (V, d) is always an R-tree.

It is tempting to try to prove Theorem IV.1 in the universal covering M rather
than in M(), so that points of T(’) would correspond to components of level sets
f-l(c). Unfortunately, the finiteness argument that concludes the proof of Lemma
IV.2 does not apply. One situation where it does work is when each critical point
of index 1 or n 1 off has a connecting loop (in the sense of I-Le 1-1); this happens
for instance if n M is virtually polycyclic, by [Lel, cor. 5.4].
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Proof of Theorem 5. We fix three positive, rationally independent, numbers
0,/3, ,, and we construct a free nonsimplicial action of F3 on an R-tree such that
0,/3, are the translation lengths of the generators.

Let C R/Z be a circle oflength 1. Consider two open intervals 11 (al, al + re1)
and Iz (a, a + ve), with 0 < ’, ve < 1. Let :, a be two real numbers. Let V be
the restriction to Ii of the rotation x x + 0q mod 1, and J ,(I).

This data yields a Morse measured foliation by the same construction as in
Section II. Instead of starting from R"- x R, we use N x C, with N a simply
connected closed manifold (e.g. S), so that we get a closed manifold M with

rM - F3. The foliation is transversely orientable, and it has four singularities
(two of index 1, and two of index n 1). Recall from the introduction that we want
all leaves dense and ff { 1).

Leaves of- are in one-to-one correspondence with the orbits of the pseudo#roup
F generated by yx and ,, i.e. the classes of the equivalence relation generated by
"x y if x Ii and y x + mod 1 (i 1 or 2)". In particular, all leaves of- are
dense if and only if F is minimal, i.e. all its orbits are dense.

It is easy to construct minimal pseudogroups, but in general they will be equiva-
lent to a group in the sense of [Le3]. The group nM/., isomorphic to the
group n:(C/F) used in [Le3], is then free abelian. Minimal pseudogroups with
7r, (C/F) F3 are found by requiring 1 + Y2 1.

THEOREM ([Le3, th60r6me 1]). Fix (11 and (12, with 1, (11, (12 rationally indepen-
dent. Given al and a2, there exist uncountably many f (0, 1) such that the pseudo-
group F determined by (11, (12, al, a2, 1 , d2 1 --/’ is minimal. These minimal
pseudogroups are not equivalent to a group (so that r (C/F)

_
Fa).

The foliation corresponding to such a F satisfies { 1}. To guarantee that. { 1 }, it is enough to ensure that there is no connection between singularities of
o- (cf. [Le2, figure 1]). In terms of F, this means that no orbit meets two of the pairs
{al, al + (11 }, {a2, a2 + (12}, {al + ’, al + ve + (11 }, {a2 + 1 ve, a2 + 1 ve + (12}"
(Two points in the same pair always have distinct orbits, but we do not need this.)
The above theorem allows us to achieve this, by choosing al, a2, ve so that 1, (11, (12,

al a2, e are rationally independent.
Finally, we need to control translation lengths. Let (1, fl, V be as in the statement

of Theorem 5. We may assume 1 (1 > fl > ),. Perform the preceding construction
with (11 fl and (12 V. Note that the natural generators of nlM can be represented
(as free homotopy classes) by closed curves transverse to - with respective
lengths 1, (11, (12. Since - is transversely orientable, a transverse curve minimizes
’-length in its free homotopy class. It follows that, for the free action of nlM on
T(’) given by the corollary of Theorem 6, the generators have translation lengths
1, (11, (12" []

Proof of Theorem 7. We prove that, if a Morse measured foliation (M, -) on
a closed manifold is transversely orientable, then rl M/.oq’ acts freely on the R-tree
T(q).
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Let M(a) be the covering of M corresponding to . Since - is assumed to be
transversely orientable, the induced foliation -(’) can be defined by a Morse
function f: M(a) R. Let d be the associated pseudodistance on M(C’). It suffices
to prove on M() the analogue of assertion (1) of Theorem IV.l: d(x, y) is always
realized by a path. The arguments are quite similar to those used before.

Define Z c [al, a2] as in the proof of Theorem IV.1. It may have more than one
component, because a leaf of (&a), whose closure contains a singularity of index
1 or n 1 may fail to separate M(’)*.
LEMMA IV.3. Let L be a leaf of (.L)*. Let W+ (resp. W-) be the set of all points

of M(L’) that can be joined to L by a path tangent to (.q’) avoiding all critical points
of index 1 (resp. n- 1). Then W+ (resp. W-) separates M(c) into at least two
components.

Proof. We give the proof for W W+. We check that W has intersection
number 0 with any loop ,/tangent to (). The only case to consider is when V
meets W. To compute the intersection number, we must push ), into M()* and
make it transverse to W. This can be done in such a way that flv is greater than
f(L), except near critical points of index n- 1. The intersection of , and W then
consists of pairs of points located near singularities of index n 1. The two points
of each pair give contributions of opposite sign to the intersection number, so that
W. =0. m

It follows from Lemma I.3 that Z consists of adjacent intervals. Arguing as in
the proof of Lemma I.2, one sees that Z has only finitely many components.
Furthermore, z(ao) can be joined to a point of ([as, a,]) in a level set of f. If
ao > al, then one of the two sets W+ or W- associated to the leaf of z(ao) separates
x from y, so that we can use the same induction argument as in the proofofTheorem
IV.1. m
Remark IV.4. Any finitely generated pseudogroup of rotations F on the circle

C R/Z gives rise (as in the proof of Theorem 5) to a transversely orientable
Morse measured foliation on a closed manifold M, and hence to a free action of a
group G(F) nM/) on an R-tree. Going back to the circle, Theorem 7 leads to
the following presentation of G(F) (cf. the remark ending part III of [Le3]). Let F
be generated by pa_rtiall_y defined rotations 7i: Ii J (1 < < k), as in the proof of
Theorem 5. Let : 1 J be a lift of Ti to the universal covering (

_
R, and ,: , ,

the extension of ), to the closure of I. Also let Yo" R R be the unit translation.
Then G(F) is generated by elements ti (0 < < k), relators being the words t)...t
such that there exists x R with -,’ o... o 7p(x) x.
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