JOURNAL OF ALGEBRA 208, 630—642 (1998)
ARTICLE NO. JA987481

On the Maximum Order of Torsion Elements in
GL(n,Z) and Aut(F,)

Gilbert Levitt

Laboratoire Emile Picard, UMR CNRS 5580, Universite Paul Sabatier,
31062 Toulouse Cedex 4, France
E-mail: levitt@picard.ups-tlse.fr

and

Jean-Louis Nicolas

Institut Girard Desargues, UPRES-A CNRS 5028, Université¢ Claude Bernard (Lyon 1),
69622 Villeurbanne Cedex, France
E-mail: jInicola@in2p3.fr

Communicated by Walter Feit

Received November 4, 1997

We study the maximum order of torsion elements in GL(n,Z) and Aut(F,),
denoted G(n) and H(n), respectively. We prove a Landau-type estimate log G(n) ~
ynlogn, and we show that H(n) = G(n) if and only if n # 2,6,12. © 1998
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0. INTRODUCTION

The maximum order g(n) of an element of the symmetric group X, was
first studied by Landau [7] (see also [10]). Denoting log the natural

logarithm, he proved

log g(n) ~ ynlog n

as n > + (as usual, ¢(n) ~ ¢(n) means lim,_, , .(e(n)/P(N) = 1; we
say that ¢ is asymptotic to ). More precise results were obtained later

(see [9]).
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Here we study G(n), the maximum order of torsion elements in the
general linear group GL(n,Z), and H(n), the maximum order in the
automorphism group Aut(F,) of a free group of rank x.

Note that 3, naturally embeds into GL(n,Z), yielding the inequality
g(n) < G(n). The inequality H(n) < G(n) also holds, as the natural epi-
morphism from Aut(F,) to GL(n, Z) has torsion-free kernel [1].

Our main results are the following.

THEOREM 1. Let G(n) be the maximum order of torsion elements in
GL(n,2).

(1) Landau’s estimate

log G(n) ~ ynlog n

holds.

(2) As n > +o, the number of distinct primes dividing G(n) is
asymptotic to 2\/ (n/logn) . The largest prime number dividing G(n) is
asymptotic to \nlog n . For a fixed prime A, let A“* be the largest power of A
dividing G(n). Then a, log A ~ 3logn as n > +,

THEOREM 2. Let H(n) be the maximum order of torsion elements in
AUt(F,)). Then H(n) = G(n) if and only if n # 2,6,12, and H2k + 1) =
HQk) if and only if 2k + 2,6,12.

We make a few comments about these results.

(1) Statements similar to Theorem 1 were proved in [11] for g(n).
Other results about G(n) will be given in [13]. In particular, it will be
shown that

m T

(2) The exceptional cases in Theorem 2 are

H(2) =4, G(2)=6
H(6) =24, G(6) =230
H(12) = 180, G(12) = 210.
(3) It follows from [5] or [6] that H(#n) is also the maximum order of
torsion elements in the outer automorphism group Out(F,) for n > 3.

There is an element of order 6 in GL(2,Z) and Out(F,), but not in
Aut(F,).
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(4) Automorphism groups of free groups are often compared to
mapping class groups of closed surfaces. Note however that torsion in
mapping class groups is bounded by a linear function of the genus.

(5) The maximum order of a finite subgroup of Aut(F,) or Out(F,)
is known to be 2"n! [14]. Though GL(n, Z) contains bigger finite subgroups
for certain values of n, it is conjectured that the maximum order K(n) of a
finite subgroup of GL(n, Z) satisfies

Sl

n!

lim =2

n— +ow

(see [3).
(6) The number H(n) is related to dynamics of automorphisms of F,
(see [8]). This was the first motivation for the present paper.

1. TORSION IN GL(n,2)

Landau’s work about the symmetric group (see [7, 10]) is based on the
formula
g(n) = max  lem(ny,...,n;)
ny+ o +ng=n
with ny,...,n, € N* = N\ {0}.
Using the inequality a + b < ab, valid for any integers a,b > 2, he
obtains

g(n) = max npia’k
Ypfi<n

where the p,’s are distinct primes and «; > 1. (Here, and in the whole
paper, the symbol p, with or without a subscript, will always denote a
prime number. We write [1p/ for the decomposition into prime factors.)

This may be rephrased as

g(n) = max k,
I(k)<n

where [: N* - N is the additive function characterized by /(1) = 0 and
I(p®) = p® Recall that a function [ is additive if (m,n) =1 = I(mn) =
I(m) + I(n).

We derive a similar formula to study torsion in GL(n,Z). Let L:
N* — N be the additive function defined by

L(1)=L(2) =0
L(p*)=e¢(p*) =p*“—p

a—1

if p¢ > 3.
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Thus, if k& =TIp/, then L(k) = Ye(p) if k#2 mod4, whereas
L(k) = Xe(pf) — 1 if k =2 mod4. Note that L(k) is always even, and
L2p®) = L(p*)if p is an odd prime.

ProPOSITION 1.1.  An integer k is the order of an element of GL(n,2) if
and only if L(k) < n.

Before proving this proposition (which is implicit in [6]), we state two
obvious corollaries.

COROLLARY 1.2.  Orders of torsion elements are the same in GL(22p,Z)
and GLQ2p + 1,2). In particular, G2p + 1) = G2p).

CoroLLARY 1.3, G(n) = max, ., k.

The method of dynamical programming used in [12] to compute g(n)
has been easily adapted to get the table of G(n) given at the end of the

paper.

Proof of Proposition 1.1. We assume k > 2. Let A have order £ in
GL(n,Z). Factoring the minimal polynomial of A into a product of
cyclotomic polynomials, one shows that there exist integers 6,, ..., 6, with

¢(81) + - @(8) <n
k =lem(6,,...,8,).

We would like to argue, as in Landau’s situation, that we may require
the §;'s to be powers of distinct primes. But, as ¢(a) + ¢(b) < ¢(a)@(b)
holds only for a,b > 3, this is true only if k is odd or divisible by 4. If
k = 2 mod 4, we conclude that some set {5,,..., §,} as above has the form
2pf, pyz, ..., pss), with pp .o p& distinct odd primes and «; > 1.

Since L(2p*) = ¢(2p®) if p is an odd prime, we have in all cases

LK) = L 1(3) = ¥ o(5) <n.

Conversely, suppose L(k) < n. We construct a block diagonal matrix of
order k in GL(n,2). If k # 2 mod4, we write k = [1p/ and we use as
building blocks elements of order p/ in GL(¢o(p/),2). If k =2 mod4,
we have to use one block of size ¢(p*) and order 2p® (with p an odd
prime). 1

We will often use the following consequence of Corollary 1.3:

M > G(n) = L(M) > L(G(n)).
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Corollary 1.3 makes it possible to extend to G most of the results proved
about g in [11] or [9], see also [10]. We content ourselves with proving
results relevant to Theorem 1. The proofs given here are fairly different
from those in [11].

PROPOSITION 1.4. Let A be a fixed prime number, and A** the largest
power of A dividing G(n). Then

1
(1 - X))\"A < ynlogn

(by ¢(n) < (n), we mean limsup,, _, . (o(n)/¢(n)) < 1).

Proof. Let G(n) =TIp/ be the decomposition of G(n) into prime
factors. Then

Z(Pi -1) < Z<p(pf“) <L(G(n)) +1<n+1,

which we rewrite as X, 5,y p < n.
Fix & > 0. Itis known (cf.[7Dthat ¥,_, p ~ x*/(2log x), and therefore
Péu\/'mp u?n for u > 0. In partlcular the sum of all primes be-

tween v2n and (1 + &)y/nlog n is asymptotic to (1 + £)?n as n — +o.
Thus, for n large, we can find a prime p, not dividing G(n), with

V2n <p < (1+ é&)y/nlogn.

Now consider the number
p
G*(n) = a2 G(n),
where [x] denotes integral part. Since p > v2n and
1
EA“A <A = AP < L(G(n)) <n,

we have G*(n) > G(n).
Corollary 1.3 then forces L(G(n)) < L(G*(n)). This gives

A% — A”A*l <p -1+ /\“/\*[ax/zl — /\“A*[a)\/z]*l_

Proposition 1.4 follows easily, using the inequality p < (1 + &)y/nlogn. 1
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Remark 1.5. Note that the estimates just given are uniform, in the
following sense: given & > 0, there exists n, such that

1
n=ny= (1 - X))\‘“s (1+ ¢&)ynlogn

for all primes A such that a, > 2. In particular, the largest prime p such
.. . 4
that p? divides G(n) satisfies p < ynlogn.

CoROLLARY 1.6. log G(n) ~ y/nlogn .

Proof. Since g(n) < G(n) and log g(n) ~ ynlog n, it suffices to fix
&> 0 and to show G(n) < g((1 + &)n) for n large. Fix a prime p with
1-1/p>Q+¢&/2)/Q + &).

Write G(n) = T1p/. We have ©.(1 — 1/p)p/i < n + 1, and therefore

1 1 1 1
1-—|YXpr<n+1+ ) ———p,«""Srl+l+EZpi“".
i Di<p

p pi p Pi<p

The term %Emgl, pfiis less than (e/4)n for n large, since A = o(n)
for any fixed prime A by Proposition 1.4. We get for n large

n+1+(g/8)n (1+¢&/2)n
1-1/p = 1-1/p

showing G(n) < g((1 + &)n). 1

Zpiai =<
i

<(1+ e&)n,

PRoOPOSITION 1.7.  Let f be the number of distinct primes dividing G(n).
Then f ~ 2y/n/log n .

Proof. For u > 0, the sum of the first 2uy/n/log n prime numbers is
asymptotic to wu?n. Thus the inequality Yo P <n implies f<
2yn/log n.

To get a lower bound for f, first observe that, if G(n) = I'1p, then

1
> Y <L(G(n)) +1<n+1.
Further, by the classical inequality between the arithmetic and geometric

mean, we have

f f

2n + 2

f
From Corollary 1.6 we have log G(n) ~ ynlogn. This implies f>

2yn/logn. |1

f 1 f
G(n) = npi“” =< (_ Zpiai
i=1 [
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PropPoSITION 1.8. Let g be the largest prime dividing G(n). Then
q~ ynlogn.

Proof. Denoting r, as the fth prime number, we have g > r, ~ f log f
~ ynlog n by the prime number theorem and Proposition 1.7. We shall
now prove the opposite inequality.

First we claim that the number of primes p < y/nlog n dividing G(n) is

asymptotic to 2y/n /log # . Indeed, if more than 2&y/n /log n primes greater
than y/n log n divide G(n) for a fixed & > 0 and infinitely many », we get
a contradiction writing

n> Y p>(1-e)’n+2s/n/lognyniogn = (1+ &’)n
plG(n)

In particular, given & > 0, the interval (1 — &)y/n log n,y/n log n ) con-
tains a prime p which divides G(n), for n large enough. Now assume that
there exists ¢ > 1 such that ¢ > cyn log n for infinitely many values of n.
We consider only these values. Choose ¢ with 1 — &> 1/c, and let p be
as above.

Arguing as in [2, Lemma 2], we see that all primes in the interval I =

Wpq . %), except at most one, divide G(n): if p,, p, € I do not divide
G(n), then G*(n) = p;;’ZG(n) > G(n) satisfies L(G*(n)) < L(G(n)), a

contradiction.
But the number p, of primes contained in I satisfies

(p+a)/2=vpa _ (1-1/Vc) ¢ RN
pr= log((p +q)/2) . 2 Iong(ﬁ Y logn -

Since y/pq = ynlogn, this is a contradiction, because the number of
primes > y/nlog n dividing G(n) is o(2y/n/log n).

The proof of Theorem 1 will be complete when we show a, log A >
2log n. The following lemma says that we may assume A = 2.

LEMMA 1.9. Let A, u be distinct primes, appearing in G(n) with expo-
nents a,, a,, respectively. Then p'~* < 4x»*1,

Proof. The proof is similar to that of the similar statement about g(n)
[11, Propriété 4]. Since the result is obvious for a, <1, we may assume
a, > 2. We define the integer b by u < AP < Au, and we consider G*(n)
= ()\b//.L)G(n) From L(G"(n)) > L(G(n)), we get

/\a)\+b 4 Maufl _ MaM72 > Ma“ _ Maufl.
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We then write

2)\@+1( w— 1) /\a)‘ )La)\+b > W a,—

%

1
1= —)(n—-1)
M

%

— g1 _1,
S (k= 1)

and the result follows. |
We need to show a, log2 > ilog n. By Proposition 1.8, it suffices to
prove that, for any integer k, there exists a number C such that
292 > qu—l/k

for all n (as before, g denotes the largest prime dividing G(n)).
Denote r; the jth prime. We define integers b, ..., b, (depending on n)
by r,q"/* > rP > q**, and we consider

G(n) k
G (n =— rbi
(n) p ,1:[1’

We have G*(n) > G(n), and therefore L(G*(n)) > L(G(n)) by Corol-

lary 1.3. Denoting 6, as the exponent of r; in G(n), we easily obtain

Zr9+bf>q—l

Since r/7 <r,q"/*, and r’ < 8r,2% by Lemma 1.9, we get the required
estimate 2"2 > Cqt-Vk Wlth C depending only on k. This completes the
proof of Theorem 1.

2. TORSION IN Aut(F,)

There is a natural epimorphism from Aut(F,) to GL(n,Z), defined by
considering the action of an automorphism on the abelianization of the
free group F,. This epimorphism has torsion-free kernel [1]. Thus H(n) =
G(n) if and only if GL(n,Z) contains an element of order G(n) that lifts
to a torsion element of Aut(F,).

ProPosITION 2.1.  Let n > 2. The following conditions are equivalent:
1) H(n) = G(n).

(2) G(n) is divisible by 4, or n is odd.

(3) GL(n,2) contains a block diagonal matrix of order G(n), each
block being a square matrix of size p® — p*~* and order p® for some prime p
and a = 1.
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Proof. (2) = (3). This follows from the proof of Proposition 1.1 when
G(n) is divisible by 4. If n is odd, we construct a block diagonal matrix of
order G(n)/2 in GL(n — 1,2), and we complete it by placing —1 in the
lower right corner.

It is easy to lift a block diagonal matrix as in (3) to a finite order
automorphism ¢ of F,, for instance by representing ¢ as an automor-
phism of a finite graph (see [4] or [6]). This proves (3) = (1).

The hard implication is (1) = (2). It follows from [6], or from the result
of [4] asserting that

H(n) = max k,
L'(k)<n

where L’ is the additive function characterized by L'(p*) = ¢(p®) for all
p>2and a>1 1

Theorem 2 now follows from:

PROPOSITION 2.2.  Let n be an even integer. Then G(n) is divisible by 4 if
and only if n #+ 2,6, 12.

Note that G(n) is divisible by arbitrarily large powers of 2 for n large
(see Theorem 1).

Proof of Proposition 2.2. Direct computation proves the result for
n < 12. We then note that G(n) is always even, and we show

G(n)=2 mod4 = n < 12.

In the arguments below, we rule out various possibilities by constructing
M > G(n) with L(M) < L(G(n)). The primes that we do not mention are
always assumed to appear with the same exponent in M as in G(n).

e G(n) is not divisible by p?, for p an odd prime (G(n) is quadratfrei).

Indeed, suppose that p* is a prime factor of G(n), with « > 2. We

define b by p < 2° <2p, and we construct M by replacing 2.p“ by
20%1 pe=1 The value of L(M) — L(G(n)) is

2b +pa—l _pa—Z _ (pa _pa—l) — 2b _pa—Z(p _ 1)2
<2p-p ¥ p-17~
It is negative if o >3, or if =2 and p > 3. If p*= 3% we have

L(M) = L(G(n)).

e G(n) is not divisible by 11.
Assume it is. If G(n) is divisible by 3, we replace 2.3.11 by 2232, If not,
we replace 2.11 by 23.3.
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e G(n) is not divisible by 13.
If it is, we replace 2.3.13 by 23.11, or 2.13 by 22.32,
e G(n) is not divisible by p > 13.
If it is, we define b by p/11 < 2° < 2p/11, and we replace 2.p by

2°+111. We have

L(M)—-L(G(n)) =2"+10—-(p—1) <

for p > 121/9 = 13.44.. . .
It follows from the items above that G(n) divides 2.3.5.7 = 210, whence
n < 12 since G(14) = 420. |

11

3. VALUES OF G(n)

639

+10-(p—-1) <0

Table I contains the values of G(n) for n < 300. Since G2p + 1) =

G(2p), we assume n to be even. We omit n if G(n) = G(n — 2).

TABLE |
n G(n) Prime factors of G(n)
1 2 2
2 6 2.3
4 12 223
6 30 235
8 60 2235
10 120 2335
12 210 2357
14 420 22357
16 840 28357
18 1260 223257
20 2520 283257
24 5040 243257
26 9240 2835.7.11
28 13860 22325711
30 27720 28325711
32 32760 2%.325.7.13
34 55440 24325711
36 65520 243257.13
38 120120 2835.7.11.13
40 180180 22.3257.11.13
42 360360 28.3257.11.13
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TABLE I-Continued

n G(n) Prime factors of G(n)
46 720720 243257.11.13
50 942480 243257.11.17
52 1113840 243257.13.17
54 2042040 2835.7.11.13.17
56 3063060 22.3257.11.13.17
58 6126120 28.325.7.11.13.17
60 6846840 2%.325.7.11.13.19
62 12252240 243257111317
64 13693680 243257.11.13.19
68 17907120 243257.11.17.19
70 24504480 253257.11.13.17
72 38798760 2%.35.7.11.13.17.19
74 58198140 22.32,57.11.13.17.19
76 116396280 2%.3257.11.13.17.19
80 232792560 243257.11.13.17.19
84 281801520 243257.11.13.17.23
86 314954640 243257.11.13.19.23
88 465585120 253257.11.13.17.19
92 698377680 243%5.7.11.13.17.19
94 892371480 2%35.7.11.13.17.19.23
96 1338557220 22.3257.11.13.17.1923
98 2677114440 2%.3257.11.13.17.19.23
102 5354228880 24.3257.11.13.17.19.23
108 6750984240 243257.11.13.17.19.29
110 10708457760 25.3257.11.13.17.19.23
114 16062686640 243%5.7.11.13.17.19.23
118 26771144400 243252.7.11.13.17.19.23
122 32125373280 253%5.7.11.13.17.19.23
124 38818159380 22.325.7.11.13.17.19.23.29
126 77636318760 2%.325.7.11.13.17.19.23.29
128 82990547640 2%.325.7.11.13.17.19.23.31
130 155272637520 243%257.11.13.17.19.23.29
132 165981095280 24.325.7.11.13.17.19.23.31
138 310545275040 25325.7.11.13.17.19.23.29
140 331962190560 25.325.7.11.13.17.19.23.31
142 465817912560 24.3%5.7.11.13.17.19.23.29
144 497943285840 243%5.7.11.13.17.19.23.31
146 776363187600 243252.7.11.13.17.19.23.29
148 829905476400 243252.7.11.13.17.19.23.31
150 931635825120 253%5.7.11.13.17.19.23.29
152 995886571680 25.3%5.7.11.13.17.19.23.31
154 1552726375200 253252.7.11.13.17.19.23.29
156 2406725881560 2%.325.7.11.13.17.19.23.29.31
160 4813451763120 243257.11.13.17.19.23.29.31
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TABLE I-Continued
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n G(n) Prime factors of G(n)
166 5745087588240 24325.7.11.13.17.19.23.29.37
168 9626903526240 25.325.7.11.13.17.19.23.29.31
172 14440355289360 24.3%5.7.11.13.17.19.23.29.31
176 24067258815600 2432527.11.13.17.19.23.29.31
180 28880710578720 25.3%5.7.11.13.17.19.23.29.31
184 48134517631200 25.32.,52.7.11.13.17.19.23.29.31
188 72201776446800 243%52.7.11.13.17.19.23.29.31
192 89048857617720 28.32,57.11.13.17.19.23.29.3137
196 178097715235440 24.3257.11.13.17.19.23.29.31.37
200 197351522287920 2%.3257.11.13.17.19.23.29.31.41
202 206978425814160 24.3257.11.13.17.19.23.29.31.43
204 356195430470880 25.3257.11.13.17.19.23.29.31.37
208 534293145706320 24.3%5.7.11.13.17.19.23.2931.37
212 890488576177200 2%32527.11.13.17.19.23.29.31.37
216 1068586291412640 25.3%5.7.11.13.17.19.23.29.31.37
220 1780977152354400 25.3252.7.11.13.17.19.23.29.31.37
224 2671465728531600 24.3%52.7.11.13.17.19.23.29.31.37
228 2960272834318800 24.3%52.7.11.13.17.19.23.29.31.41
230 3104676387212400 24.3%52.7.11.13.17.19.23.29.31.43
232 5342931457063200 25.3%52.7.11.13.17.19.23.29.31.37
236 7302006324653040 24325.7.11.13.17.19.23.29.31.37.41
238 7658201755123920 24.3257.11.13.17.19.23.29.31.37.43
242 8486115458380560 24.325.7.11.13.17.19.23.29.31.41.43
244 14604012649306080 253257.11.13.17.19.23.29.31.37.41
246 15316403510247840 25.3257.11.13.17.19.23.29.31.37.43
248 21906018973959120 24.3%5.7.11.13.17.19.23.29.31.37.41
250 22974605265371760 2%43%5.7.11.13.17.19.23.29.31.3743
252 36510031623265200 2%.3252.7.11.13.17.19.23.29.31.37.41
254 38291008775619600 243252,7.11.13.17.19.23.29.31.37.43
256 43812037947918240 253%5.7.11.13.17.19.23.29.31.37.41
258 45949210530743520 25.3%5.7.11.13.17.19.23.29.31.37.43
260 73020063246530400 25.32,52,7.11.13.17.19.23.29.31.37.41
262 76582017551239200 25.32,52,7.11.13.17.19.23.29.31.37.43
264 109530094869795600 24.3%52.7.11.13.17.19.23.29.31.37.41
266 114873026326858800 243%52.7.11.13.17.19.23.29.31.37.43
270 127291731875708400 243%52.7.11.13.17.19.23.29.31.4143
272 219060189739591200 25.3%52,7.11.13.17.19.23.29.31.37.41
274 229746052653717600 25.3%52.7.11.13.17.19.23.29.31.37.43
278 313986271960080720 24.325.7.11.13.17.19.23.29.31.37.41.43
282 343194297258692880 24.3%,5.7.11.13.17.19.23.29.31.37.41.47
284 359935482490824240 24325.7.11.13.17.19.23.29.31.37.43.47
286 627972543920161440 25.325.7.11.13.17.19.23.29.31.37.41.43
290 941958815880242160 243%5.7.11.13.17.19.23.29.31.37.41.43
294 1569931359800403600 24.32.52.7.11.13.17.19.23.29.31.37.41.43
298 1883917631760484320 25.3%5.7.11.13.17.19.23.29.31.37.41.43
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