
Topolo~v VOI. 22, No. 2, PP. 119-135. 1983 
Printed in Great Brilair.. 

CiMl-9383/83/02011%17103.00/0 
Pergamon Press Lid 

FOLIATIONS AND LAMINATIONS ON 
HYPERBOLIC SURFACES 

GILBERT LEVITT 

(Received 18 February 1981) 

01. INTRODUCTION AND STATEMENT OF RESULTS 

GEODESIC LAMINATIONS on surfaces have been introduced by Thurston in his study[l7] 
of 3-manifolds with a hyperbolic structure (i.e. a Riemannian metric of constant 
curvature -1). He has also noticed (unpublished) that, given a hyperbolic structure on 
a surface, there is a bijective correspondence between measured laminations and 
equivalence classes of measured foliations (a related result has been obtained by 
Aranson and Grines [ 11). 

But a general foliation with p-prong saddle singularities (p 3 3) on a surface is 
topologically conjugate to a measured foliation (in the sense of .[4, 161) if and only if its 
non-compact leaves are locally dense (see 94 below), and very few foliations (even of 
class Cr) satisfy this condition. The aim of the present paper is to show how 
Thurston’s construction can be generalized to non-measured foliations in order to 
yield a canonical representation of foliations with saddle singularities on a given 
hyperbolic surface. 

Let us first consider (non-singular) foliations 9 with no compact leaf on the 
2-torus T2 = R2/Z2. As is well known since Denjoy[3], such a foliation, if C2, is 
topologically conjugate to an “irrational flow” (the projection onto T* of a foliation of 
R2 by lines of irrational slope). Denjoy also gave an example of a Co (even C’) 
foliation not conjugate to an irrational flow. Roughly speaking, his example can be 
obtained from an irrational flow by “opening up” a leaf f, that is replacing f by two 
leaves f’ and f- whose distance goes to 0 as-one goes out to infinity on either leaf, and 
pushing apart the other leaves to make room; the space between f’ and f- is then 
filled in by new leaves, and the complement of these new leaves is a non-trivial 
compact minimal set. 

One way of distinguishing a Denjoy example from a C2 foliation is by considering 
the induced foliation 9 on the universal covering R2. Given a leaf f of @, the line 
defined by two points p and 4 of f has a limiting position rci> when p and 4 go to 
infinity in opposite directions on f. The line ru) has some irrational slope (Y, and 
conversely every line of slope (Y is obtained by “straightening” a leaf { If 9 is 
conjugate to an irrational flow, different leaves of .@ give rise to different lines. If 9 is 
a Denjoy example, corresponding lifts to R2 of the leaves f’ and f- (and all “new” 
leaves in between) give rise to the same line. We call such a line “thick”. 

Projecting down to T2, we see that by straightening leaves we have attached to a 
foliation 9 an irrational flow r(F), which is a totally geodesic foliation for the 
canonical flat metric of T’; if 9 is not conjugate to an irrational flow, then y(9) has at 
least one thick leaf. Markley has shown[8] that foliations on T’ with no compact leaf 
can be classified up to isotopy by specifying an irrational flow on T* and a family (at 
most countably infinite) of thick lines; the foliation is obtained from the irrational flow 
by opening up these thick lines. 

A similar pattern works for a foliation 9 with saddle singularities on a hyperbolic 
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surface M, except that by straightening leaves of 9 we get a geodesic lamination 
instead of a geodesic foliation; a geodesic lamination is a non-empty set of disjoint 
simple geodesics (the leaves of the lamination) whose union is closed in M (see 82 
below). 

Let us be more precise. We consider a closed orientable surface M of genus v 
greater than 1 equipped with a fixed hyperbolic metric, and foliations S on M whose 
singularities are saddles with any number p 2 3 of prongs. We shall always assume 
that 9 satisfies the following technical condition (*): “if f and f’ are homotopic 
(possibly singular) compact leaves of 9, all leaves contained in the open annulus 
bounded by f and f’ are also compact“ (see the precise definition of a singular 
compact leaf and its homotopy class in 03 below): in particular 9 has no Reeb 
component. This is no significant restriction, as any foliation can be reduced to a 
foliation of this type by modifying it in finitely many annuli bounded by compact 
leaves; the restriction of the original foliation to these annuli is very easy to describe 

(see, e.g. PI, 91). 
Two foliations will be considered equivalent if one can pass from one to the other 

by Whitehead operations (see [4,16]) and an isotopy (= conjugation by a homeomor- 
phism isotopic to the identity). 

We can now state the following result: 

THEOREM 1. Let M be a closed orientable hyperbolic surface. 
(1.1) To a foliation 9 on M are canonically associated a geodesic lamination y( 9) 

and a family e(.F) of leaves of this lamination; this family is at most countably infinite 
and contains all isolated leaves of y(9). If 9 and 9’ are equivalent foliations, then 
~(5) = ~(9’) and e(9) = e(9). 

(1.2) Given a lamination y and a family e of leaves of y as above, there exists a 

foliation 9 such that y(.F) = y and e(S) = e. This foliation is unique up to equivalence. 

Basic properties of a foliation 9 can easily be expressed in terms of y (9) and e( 9). 
For example: 

THEOREM 2. Let M be as in Theorem 1. 
(2.1) If 9 is topologically conjugate to a measured foliation (i.e. if there exists a 

transverse measure whose support is all of M), then e(F) consists exactly of the 
compact leaves of y(F), and conversely (examples with e(9) containing non-compact 
geodesics will be given in $5 below). 

(2.2) Given a transverse measure u of 9, there exists a unique transverse measure 

u’ of y(F) satisfying i(9, u; C) = i(y(.FI, u’; C) f or all isotopy classes C E Y of 
simple closed curves (the number i (9, 1; C) is defined as in [4 or 161; define i(y(P), 

CL’; C) as the mass deposited by k’ on the geodesic representing C). 
(2.3) A foliation 9 contains a leaf cycle if and only is M - ~(9’) is not simply 

connected. 
(2.4) The lamination y(.Y) contains a compact geodesic g if and only if 9 contains 

a (possibly singular) compact leaf homotopic to g. 

Once a hyperbolic structure has been chosen on M, this correspondence between 
foliations and laminations yields a canonical way of representing an equivalence class 
of foliations. This can be used for instance to study transversality of foliations, or to 
define the intersection number of two measured foliations (Thurston). It is also 
possible, using laminations, to construct many examples of foliations with no compact 
leaf, no leaf cycle, and no dense leaf. 
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When studying transverse measures of foliations, assertions 1.1, 1.2, 2.1 and 2.2 
show that there is no loss of generality in restricting oneself to “measured foliations”. 
The topology and dynamics of a foliation 9, however, depend heavily on the leaves in 
e(9); in [6, 71, we shall study the dynamics of 9, in particular its limit sets, and 
explain how they can be interpreted in terms of ~(9) and its sublaminations. 

I am very grateful to Francois Laudenbach and Steve Kerckhoff for helping me 
understand Thurston’s construction. I also wish to thank the university of California 
at Berkeley for its hospitality during the preparation of this paper, and the referee for 
helpful comments. 

We shall now proceed to the proofs. Assertion 1.1 will be proved in paragraph 3, 
assertion 1.2 in paragraphs 6 and 7. Theorem 2 will be proved in paragraph 4. 
Paragraph 2 is devoted to geodesic laminations, paragraph 5 to examples, and 
paragraph 8 to the “extension lemma”. 

$2. GEODESIC LAMINATIONS 

A geodesic lamination on a closed hyperbolic surface of genus v 2 2 is a non- 
empty collection y of disjoint simple (= not self-intersecting) geodesics of M whose 
union is closed in M. This closed set is the support of y; it always has area 0 in M 
([17] p. 8.27; see $4 below), in particular it is nowhere dense. The support therefore 
determines the lamination, and we can confuse a lamination and its support. The 

geodesics in y are called leaves of y. 
A sublamination of y is a lamination contained in y. A lamination is minimal if it 

contains no sublamination (except itself). A geodesic g in y is proper (resp. isolated) 

if there exists an open transverse interval meeting g exactly once (resp. meeting g but 
no other leaf of y). The geodesic g is isolated on one side in y if there exists a 
transverse interval [a, b] with u E g but [a, b] fl y = 0. The component of M - y 
which contains b is bounded by g. 

Note that an isolated geodesic is proper (and therefore isolated on both sides): if g 
were isolated but not proper, its intersection with some compact transverse interval 
would be perfect but countable. The same argument shows that a minimal lamination 
either consists of a compact leaf or contains uncountably many leaves. 

We shall consider the universal covering p: &f-M. The space ti, with the 
induced Riemannian metric, is isometric to the hyperbolic plane, and via the Poincare 
model we identify it with the interior of a disc bounded by a circle at infinity S. It is 

Fig. 1. 
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well known that any covering transformation u E r,M can be extended to a 
homeomorphism of the closed disc ti U S, and that for the action of n,M thus induced 
on S all orbits are dense. 

In the Poincare model, geodesics are contained in circles orthogonal to S (and 
diameters). Two distinct points of S can be joined by a unique geodesic of &f. If S’ is 
a finite subset of S consisting of at least 3 points, the closed subset of fi bounded by 
the geodesics joining neighboring points of S’ is called an asymptotic polygon (see 
Fig. 1); its area is (IS’1 - 2)7r. 

If y is a lamination on M, the preimage 7 = p-‘(y) is a lamination on u, and it 
defines a closed n,M-invariant subset 9JY of the space 3 of geodesics of i%? (geodesics 
of it$ correspond to pairs of points of S: % therefore inherits a natural topology). 

PROPOSITION. Let y be a geodesic lamination on a closed surface M. 
(i) For a geodesic g in y, the following conditions are equivalent: (a) g is isolated. 

(b) The geodesics in p-‘(g) are isolated points of %$. (c) The complement of g in y is 
compact (and therefore is either a lamination or the empty set). 

(ii) If g is not compact, these conditions are also equivalent to the following: (d) g 
is proper. (e) g belongs to no minimal sublamination of y. (f) There is no transverse 

measure of y whose support contains g. 
(iii) There are only finitely many isolated leaves; the other leaves are partitioned 

into finitely many minimal sublaminations. 

Remark. Several of the equivalences above are in [17], explicitly or implicitly. 

Proof. (i) The equivalence between (a) and (c) is clear. To see that (b)e(c), note 
that there is a bijection between sublaminations of y and closed non-empty n,M- 
invariant subsets of $. If (b) holds, then +& - p-‘(g) is closed, and y - g is a lamination 
(unless it is empty). If (c) holds, then p-‘(g) is open in %+ Since g is proper, p-‘(g) is 
discrete and therefore consists of isolated points. 

(ii) Here we assume that g is not compact. We have already seen (a)+(d), and we 
shall prove successively (d)+(e), (a)+(f), (f)+(e), (e)+(a). In a minimal lamination 
different from a compact leaf, every half-leaf is dense, and therefore no leaf is proper; 
this proves (d)+(e). To prove (a)+(f), simply note that, if a non-compact isolated 
geodesic g belongs to the support of a transverse measure, then any transverse 
segment whose interior contains an accumulation point of g has infinite measure, an 
impossibility. It is easy to check that any lamination admits a transverse measure 
(obtained as a limit of counting measures, see [17] Proposition 8.10.6). If the 
lamination is minimal, every leaf is contained in the support. This proves (f)+(e). 

To prove (e)+(a), first consider a component U of M - y. The restriction to U of 
the Riemannian metric of M defines a distance on U, for which we can construct the 
metric completion t? (0 is an abstract space, not a subset of M; if for instance U is 
simply connected, then 0 is congruent to an asymptotic polygon). 

The inclusion map from U to M extends isometrically to an immersion of 0 into 
M whose image is the union of U and the geodesics of y that bound it. An easy 
computation based on the Gauss-Bonnet theorem shows that the area of 0 is an 
integral multiple kg of r, and that the number of geodesics in So is at most k + 2. 
Noting that k + 2 zz 3k and that M has area (4~ -4)r, we see that a lamination 
contains at most 12~ - 12 geodesics isolated on one side. 

It follows that y contains finitely many minimal sublaminations: if yl, . . . , yq are 
distinct minimal sublaminations of y, they are disjoint and each contains at least one 
geodesic isolated on one side in yI U . . . U yq; therefore q 5 12~ - 12 (in fact one can 
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prove that y contains at most 3 Y - 3 minimal sublaminations). Consequently the union 
of all minimal sublaminations of y is a lamination yo. 

Note that both (ii) and (iii) are now consequences of (e)+(a). To prove (e)+(a), 
consider a geodesic g E y - yo, and denote by U the component of M - y. that 
contains g. Since U contains no minimal sublamination of y, a half-leaf contained in g 
cannot stay in any compact set K C U; this can be seen to imply that each end of g 
must either spiral towards a compact geodesic bounding U or eventually be contained 
in a cusp of U Since the total number of cusps of components of M - y is finite, it 
follows that g is isolated in y. This completes the proof of the proposition. I7 

13. PROOF OF 1.1; CONSTRUCTION OF y(%9 AND e(3 

Let .!$ be the foliation induced by 5 on ti. By a leaf of 9, we shall mean either a 
regular leaf (containing no singularity), or a connected union h of separatrices 
satisfying the following condition: if a saddle s belongs to h, exactly two separatrices 
issued from s belong to h, and these separatrices are adjacent; furthermore separa- 
trices not belonging to h but with an endpoint on h leave h all on the same side (see 
Fig. 2). 

A singular leaf of .C8 

--t-t- 

Not a leaf 

Fig. 2. 

Since all singularities of 9 are saddles, a regular compact leaf or a leaf cycle of 9 
cannot be contractible in M. This implies that a leaf of 5% is the image of a continuous 
injection from R to a, and that a separatrix of 4 belongs to exactly two leaves. 

We define a leaf of 9 as the projection f = p(h) of a leaf of .$. A compact leaf 
p(h) of 9 is therefore either a regular leaf or a union of saddle connections. It cannot 
be contractible, and so there exists a non-trivial covering transformation sending h 
into itself. The geodesic of ti preserved by this transformation projects to a simple 
compact geodesic g of M. If p(h) is a regular leaf, it is isotopic to g. If it is singular, 
we say that it is homotopic to g. Note that two homotopic compact leaves always 
bound an open annulus. 

A transverse curve is a simple closed curve C C M never tangent to 9 and 
containing no singularity of 9. Since all singularities of 9 are saddles, such a curve is 
non-contractible (and therefore isotopic to a geodesic). Also note that, if ho is a 
half-leaf of 4 such that p(ho) is not compact and does not spiral towards a compact 
leaf, then there exists a transverse curve meeting p(h,) infinitely often: pick a 
non-compact leaf in p(h,) - p(ho) and choose any transverse curve meeting it. 
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The first step in the construction of -y(9) is the following result: 

LEMMA 1. Let h be a leaf of 9. Each end of h converges to a point of S; the two 

points at infinity thus determined by h are distinct. 

Proof of Lemma 1. First note that the behavior at infinity of leaves of $ does not 
change if we replace 9 by an isotopic foliation. This is because a homeomorphism cp 
of M isotopic to the identity can be covered by a homeomorphism (p of k such that 
sup d(x, 6x) is finite (d denotes distance in A&; the continuous extension of such a (p 
xgti 
to n;i U S induces the identity on S. So we can change 9 by an isotopy whenever 
convenient. 

Consider an end of h defined by a half-leaf h,, C h. The first assertion of lemma 1 
is clear if p(h,) is a compact leaf of 9 or spirals towards a compact leaf. Otherwise, 
there exists a curve C transverse to 9 meeting p(h,) infinitely often; by an isotopy we 
can assume C is a geodesic. 

Since C meets p(h,) infinitely often, the half-leaf ho meets p-‘(C) infinitely often. 
Note however that it can meet a given component at most once: if not, there would 
exist an angular disc D embedded in G, with 6D consisting of an arc of ho and an arc 
transverse to 9, and this is impossible as all singularities of 9 are saddles. All limit 
points of ho in ti U S therefore belong to the intersection of an infinite family of 
half-spaces of &f U S bounded by components of p-‘(C). 

Because a compact set in n;i meets only finitely many components of p-‘(C), this 
intersection has to be contained in S. It is connected, and cannot be disconnected by 
removing an endpoint of a component of p-‘(C); since endpoints of components of 
p-‘(C) are dense in S, it follows that h,, converges to a point of S. We have now 
proved the first assertion of Lemma 1. 

The second assertion is clear if p(h) is compact, or if there exists a transverse 
curve C meeting p(h) at least twice since then any component of p-‘(C) which meets 
h separates its points at infinity. Otherwise, the ends of p(h) spiral towards compact 
leaves f, and fi. 

Suppose the two points at infinity of h were the same. Then f, and fi are 
homotopic (because two non-trivial elements of ~T,M having a common fixed point on 
S preserve the same geodesic). If f, = f2, both ends of p(h) spiral towards f, on the 
same side; this is impossible since all singularities of 9 are saddles. If f, d f?, they 
bound an open annulus containing p(h). This is impossible as 9 is assumed to satisfy 

(*). cl 

We can now associate to a leaf h of 4 the geodesic r(h) joining its two points at 
infinity. Geodesics y(h) and -y(h’) attached to leaves h and h’ of 4 are either equal or 
disjoint in ti (they can have one common endpoint on S). Let -y(& be the union of 
all the geodesics obtained by this “straightening” process from leaves of 9. Note that 
it is a rr,M-invariant subset of &f. Geodesics in ?(a therefore project onto simple 
geodesics in M. 

If f = p(h) is a leaf of 9, we shall denote by y(f) the geodesic p(y(h)); it depends 
only on f, not on the choice of h in p-‘(f). Note that if f is compact then yCf) is 
compact and homotopic to f. 

LEMMA 2. The set r(& is closed in $f. 

Before tie prove lemma 2, let us use it to define -y(9) as the projection p(y(@); 
since a set A C M is closed if and only if p-‘(A) is closed in fi, this projection is 
indeed a lamination on M. It is easy to check that y(& and ~(59 depend only on the 
equivalence class of 9. 
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Proof of Lemma 2. Let g, = -y(h,) be a sequence of geodesics in r(@) converging 
to a geodesic g. The g,,‘s do not intersect g (unless they are equal to g), and we can 
assume without loss of generality that they are distinct from g and all on the same 
side of g. Let L be the limit set in &f U S of the sequence of subsets h,. For any leaf 
m of 9, the set L meets at most one component of (a U S) - fi (we denote by ti the 
closure of m in &f U S, obtained by adding its two points at infinity). Since points at 
infinity of leaves of 9 are dense in S, the set L meets fi and therefore contains at 
least one leaf h of & Let ho C h be a half-leaf. In order to prove lemma 2, it suffices 
to show that ho converges to one of the points at infinity of g. 

Assume first that there exists a simple closed curve C transverse to 9 meeting 
p(ho) infinitely often. If ho does not converge to the corresponding point at infinity of 
g, there is a half-space of ti U S bounded by a component of p-‘(C), that contains 
the point at infinity of ho but does not contain the points at infinity of the leaves h,. 

This is impossible for n large. 
If p(ho) spirals towards a compact leaf, so do leaves close to it, and ho converges 

to one of the points at infinity of g (which is also a point at infinity of h, for n large). 
Finally, if p(h) is compact, then p(h,) spirals towards it for n large enough; therefore 
y(h) and g have one point in common at infinity. If y(h) were different from g, 
applying to h a suitable covering transformation which sends y(h) into itself would 
yield leaves of 4 separating h from the leaves h,, a contradiction. cl 

Remark. We have actually proved the following two assertions: 
(3.1) If a sequence h, of leaves of 4 converges towards a leaf h, then y(h,) 

converges to y(h). In particular, the union of all leaves f of 9 such that yCf) belongs 
to a given sublamination of ~(9) is compact. 

(3.2) If a sequence g, = y(h,) of geodesics in ~(5%) converges towards a geodesic g, 

the sequence h, contains a subsequence converging to a leaf h such that y(h) = g. In 
particular, pick a leaf f in F; the union of the geodesics y(f’), taken over all leaves f’ 
contained in x is a sublamination of y(9). 

Remark. Say that a compact set K C A4 is quasiminimal if it is the closure of a 
recurrent regular leaf. One can prove that there is a bijective correspondence between 
quasiminimal sets of 9 and minimal sublaminations of ~(9) not consisting of a 
compact leaf (see [6, 71). 

Now we turn to the construction of e(9), a family of leaves of -y(P) which is at 
most countable and contains all isolated leaves of y(9). We say that a geodesic g in 
y(@ is thick if there are two distinct leaves h and h’ such that y(h) = y(h’) = g. 

The second assertion of lemma 1 implies that such leaves h and h’ are disjoint. 
They bound in fi a connected open set U(h, h’), and every leaf m contained in 
U(h, h’) satisfies y(m) = g. Therefore any two distinct leaves in U(h, h’) are disjoint; 
in other words, the set U(h, h’) contains no singularity of 5% Furthermore, we know 
that the union of all leaves n such that y(n) = g is closed in u (by Assertion 3.1). 
Consequently there exist extreme leaves ho and h’ (with y(h’) = y(h’) = g), such that 
any leaf h with y(h) = g belongs to ho U h’ U U(h’, h’). 

The set of thick geodesics in y($) is preserved by the action of r,M, and its 
projection is a family e(9) of thick geodesics of y(9). This family is at most 
countable; note that it is not necessarily a sublamination of y(9), as its support need 
not be closed. 

Since obviously e(9) = e(P) for equivalent foliations, the last thing we need to 
check is that all isolated geodesics in y(9) are thick. Let g E y(9) be isolated, f a 
leaf of 9 such that yCf) = g, and h a component of p-‘cf). If f is compact, 
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non-thickness of g would imply the existence of leaves of 9 spiraling towards f at 
least on one side of f (on both if f is a regular compact leaf), contradicting the fact 
that g is isolated. 

If f is not compact, consider simple closed curves C and C’ transverse to 9, and 

components d and C’ of p-‘(C) and p-‘(C) respectively, such that h meets both C 
and C’; we can choose these curves C, C’, C and C’ so that any leaf of 4 meeting 
both C and C’ has the same points at infinity as h (we use (a)+(b) in the proposition 
in 02). Then leaves m of 5% meeting C near h n d satisfy y(m) = y(h), and therefore 
g is thick (if the arc of h between C and C’ contains a singularity of $, we consider 
leaves m only on the side of this arc where there are no separatrices). 0 

84. PROOF OF THEOREM 2 

Let us restate the assertions contained in Theorem 2: 
(2.1) A foliation 9 is topologically conjugate to a measured foliation if and only if 

e(S) consists exactly of the compact leaves of y(9). 
(2.2) To a transverse measure u of 9 corresponds a unique transverse measure u’ 

of r(a with i(E CL; C) = i(r(fl, CL’; C) f or all isotopy classes C E Y of simple 
closed curves. 

(2.3) A foliation 9 contains a leaf cycle if and only if M - $9) is not simply 
connected. 

(2.4) The lamination y(9) contains a compact geodesic g if and only if 9 contains 

a compact leaf homotopic to g. 

We shall prove successively assertions 2.4, 2.3 and 2.1. Proof of Assertion 2.2 is 
left to the reader. 

Proof of 2.4. We have already noted that, if f is a compact leaf of 9, then y(f) is 
compact and homotopic to f. Conversely, let g E y(9) be compact. Choose a 
component g of p-‘(g), and a non-trivial u E n,M with a(g) = g. If ho is an extreme 
leaf of 4 with y(h’) = g, then (+(h’) = ho, and p(h”) is a compact leaf of 9 homotopic 
to g. q 

Proof of 2.3. Suppose 9 contains a leaf cycle. This cycle is not contractible, and 
the geodesic homotopic to it either is disjoint from y(.!F) or belongs to y(9) but is 
isolated on one side (if the cycle is a leaf). In both cases at least one component of 
M- y(9) is not simply connected. 

Now suppose that 9 has no leaf cycle. Changing 9 by Whitehead operations 
allows us to assume that there is no saddle connection. If s is a p-prong saddle of 9, it 
belongs to exactly p leaves fi (1 5 i 5 p). The geodesics y(fi) bound a simply 
connected component U, of M - y(9) whose area is (p - 2). m. A p-prong saddle can 
be viewed as a singularity of index (2 - p)/2, and the sum of the indices of the 
singularities of 9 is equal to x(M) = 2 - 2v (see [4], expose 5, formule 1.6). Since the 
area of M is (4~ - 4). T, every component of M - ~(9) is one of the V, and therefore 
is simply connected. 0 

Remark. We have proved in a special case that the support of a lamination has 
area 0. The proof in the general case is based on a similar computation (see [17], p. 
8.27). 

Proof of 2.1. Suppose 9 is topologically conjugate to a measured foliation. 
Denote by p a transverse measure with support equal to M. The existence of p 
implies that no leaf of 9 can spiral towards a compact leaf: consequently every 
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compact geodesic in y(fl is isolated and thick. We have to show that a non-compact 
geodesic g in ~(a cannot be thick. Choose a component g of p-‘(g), and suppose 
that h and h’ are two distinct leaves of 4 with r(h) = y(h’) = f. We obtain a 
contradiction as follows. 

Since no non-trivial covering transformation sends g into itself, the restriction of 
the projection p to U(h, h’) is injective. The leaf f = p(h) of 9 is not compact and 
does not spiral towards a compact leaf. Therefore there exists a transverse curve C 
meeting f infinitely often. The intersection of C with the projection of U(h, h’) 
consists of infinitely many disjoint open intervals. Since U(h, h’) contains no sin- 
gularity of 9, these intervals all have the same p-measure. The total w-measure of C 
being finite, these intervals are p-negligible, contradicting the assumption that p has 
support equal to M. 

Suppose conversely that all geodesics in e(fl are compact. Then every isolated 
leaf of r(m is compact, and ~(5) is the union of its minimal sublaminations. In order 
to show that 9 is topologically conjugate to a measured foliation, we shall first prove 
that every non-compact leaf f of 9 is locally dense (i.e. its closure has non-empty 
interior). 

Denote by p the closure of -yCf) and by p’ the complement of p in y(5); note that 
p’ is compact. Let F (resp. F’) be the union of all leaves f in 9 such that -y(f) E p 
(resp. p’). The sets F and F’ are compact (see Assertion 3.1 in 93) and they cover M. 
Since F’ is not equal to M, the set F has non-empty interior, and we only need to 
show that f contains any leaf rn C F. 

Consider the subset of ~(5) obtained by straightening all leaves in 5 It is compact 
(43, Assertion 3.2), and consequently contains /3. The set 7 therefore contains a leaf n 
such that r(n) = r(m). Since -y(m) is not thick, we have n = m, and finally M C f as 
required. Note that, if 9 has no leaf cycle, every component of M - r($) is simply 
connected and therefore y( 5) is a minimal lamination; this implies that every leaf of 9 is 
dense. 

What we have done so far proves that in a measured foliation every non-compact 
leaf is locally dense, and even dense if the foliation has no leaf cycle (one can give a 
more natural proof, using Poincare’s recurrence theorem; see [4] expose 9). Con- 
versely, it is a general fact that a foliation whose non-compact leaves are locally dense 
is topologically conjugate to a measured foliation. Here is a sketch of the proof in the 
special case when 9 has no leaf cycle. One first checks that all leaves of 9 are dense. 
By taking a limit of counting measures, one then proves that 9 admits at least one 
transverse measure. Since leaves are dense, the support of this measure is all of M, 
and 9 is topologically conjugate to a measured foliation. 0 

Remark. Most results about foliations can be expressed in terms of laminations. 
For example, Schwartz’s theorem ([13]) can be rephrased as follows (see [7]): if 9 is 
defined by a C2 vector field, then every sublamination of -y(m contains a compact leaf 
or a non-thick leaf isolated on one side in r(%). 

85. EXAMPLES 

For a measured foliation %,, the family of geodesics e(&J consists exactly of the 
compact geodesics in y(g,,). The simplest way to get an example with e(%) containing 
non-compact geodesics is to start with a measured foliation $, and to open up a 
countable (possibly finite) family of non-compact leaves fi. The resulting foliation 9 
satisfies y(m = y(sO), but e(m is the union of e(&) and the geodesics r(fi). 

To get other examples, consider a Denjoy foliation 9’ obtained by opening up a 
leaf f on an irrational flow on T2, as in 01. Pick a point a+ on f’ (resp. a- on f-), and 
take a two-sheeted covering of T2 branched over a+ and a-. The foliation gd lifts to 
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an orientable foliation 9 on a surface M2 of genus 2, with two 4-prong saddles s + and 
s- above a’ and a-. The inverse image of the non-trivial compact minimal set of 3J is 
the union of two quasiminimal sets K, and Kz of 9 whose intersection consists of s- 
and s- (see remark following Assertion 3.2 in 93 for the definition of the word 
quasiminimal). They each contain two adjacent separatrices of s+ and s-. 

Straightening leaves in K, (resp. KJ gives rise to disjoint laminations yI and y2; 
the other leaves of 9 get straightened to thick geodesics g and g’ whose closures 
contain yI and -yz (see Fig. 3). The lamination y(5P) is the union y, U y? U g U g’; it 
does not carry a transverse measure with full support. The family e(m consists of g 
and g’. 

Let 6 be the compact simple geodesic in M - (y, U yz) (see Fig. 3 or 4), and g” be 
a simple geodesic in M - (y, U yz U g) meeting g’ and S each exactly once (as on Fig. 
4). There exists an orientable foliation 9’ on M2 such that ~(91) = y, U y? U g U g” 
and e(9’) = g U g”. It has two quasiminimal sets K; and Ki (one on each side of 6, 

corresponding to yI and y2); if f is a leaf of 9’ not contained in K; U Ki, it meets 6 
exactly once and its closure is f U K; U K;. 

Unlike 9, the foliation 9’ can be made transverse to 6 by an isotopy, and in fact 
9’ can be constructed by glueing together along S two “Cherry examples”; by a 
Cherry example ([2, 141, Chap. 9) we mean an orientable foliation of the punctured 
torus, transverse to the boundary, with one 4-prong saddle, no compact leaf and no 
saddle connection; exactly one separatrix of the saddle reaches the boundary: the 
other 3, together with the leaves not meeting the boundary, form a quasiminimal set. 
If the glueing of two Cherry examples is done so as to create one saddle connection 
(as in [5], Example 3), one gets a foliation P for which e(9”) contains only one 
geodesic. 

Fig. 3. 

The non-compact surface M> -(y, U yz). 

Fig. 4. 
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16. PROOF OF 1.2: EXISTENCE OF 9 

Let y be a geodesic lamination on M, and e a family of leaves of y, at most 
countably infinite and containing all isolated leaves of y. We want to construct a 
foliation 9 with y(@ = y and e(%) = e. 

Here is a rough sketch of the proof. First consider a measured foliation 9 with no 
compact leaf and no saddle connection. We have seen that e(9) is empty and that 
each component U, of M - ~(9) is congruent to the interior of an asymptotic 
polygon; its boundary consists of the geodesics obtained by straightening the leaves 
of 9 containing a given saddle s. Conversely, we can pass from ~(9) to 9 by 
collapsing each U, onto the union of s and its separatrices. In other words, there is a 
cpntinuous surjective map z from M to itself, homotopic to the identity, and carrying 
leaves of ~(9) onto leaves of 9. If G is a collection of disjoint compact geodesics gi 
separating M into pairs of pants, we can require that z sends each g, into itself. 

Assume for simplicity that y is a minimal lamination not consisting of a compact 
geodesic. Using the above observations, we can construct a foliation 9” with ~(9~0) = 
y and e(%“) = 0, as follows: we first choose a pair of pants decomposition G as above; 
we also choose, for each component Uj of M - -y, a 1 -complex Kj onto which Uj 
collapses; we then construct on each gi a continuous surjective map collapsing to a 
point each component of g; fl (M - y); we finally construct .5%$ pair of pants by pair of 
pants, using these maps and the Kj’S. If e is. not empty, a foliation 9 satisfying 
y(+T = y and e(m = e can be obtained from &, by opening up leaves corresponding to 

geodesics in e. 
We now begin the actual proof. Choose a decomposition of M into pairs of pants 

by disjoint non-separating compact geodesics g; (1 I i I 3 Y - 3) such that no gi is a 
leaf of y and all gj’s meet y; we shall denote by G the union of the g;‘s. The existence 
of such a decomposition is clear if y contains a compact geodesic. If not, consider the 
completion ~j of a component Uj of M - y (as in the proof of (e)+(a) in $2). A 
simple computation based on the Gauss-Bonnet theorem shows that the area of oj is 
at least 2~ times its first Betti number. The union of the images of the H,(U,, R) in 
H,(M, R) therefore spans a subspace of dimension at most 2u - 2, i.e. of codimension 
at least 2. So we can ensure that all gi’S meet y by requiring that they define homology 
classes outside that subspace. 

Let U, be a component of M - y. Since oj has geodesic boundary, Uj satisfies the 
following convexity property: any path in q is homotopic in Uj (rel. endpoints) to a 
unique geodesic path. Also note that every component of Uj - G is simply connected, 
because it is contained in a pair of pants whose three boundary components belong to 
G and therefore meet y. 

We are going to construct in Vi a connected l-complex & This complex has 
finitely many edges and vertices, but it is not compact (unless oj is compact): in each 
cusp of Uj there is one edge of Kj going off to infinity. We require that Kj satisfies the 
following conditions: no vertex belongs to G, each edge is geodesic and meets G, and 
most importantly each component of G fl Uj meets Kj exactly once (see Fig. 5 for an 
example with U, simply connected). 

To construct Kj, first consider a cusp c of Uj bounded by two geodesics g, and g: 
of y. There are infinitely many components of Uj n G which join g, to g: and bound 
in U, a disc.containing c; let A, be the extreme one (see Fig. 5). Let Vj C oj be the 
compact surface obtained by truncating each cusp c along A,. We define a finite set ‘V 
by choosing one point in each component of Vj - G (these points will be the vertices 
Of Kj). 

Now consider the set % of geodesic arcs joining two points of V (possibly equal) 
and meeting G exactly once. By the convexity of Uj (see above), each component of 
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Vj n G which is 
Uj - G is simply 

not a A, meets at least one such arc. Recall that each component of 
connected; it follows that two arcs in % cannot intersect outside of 

7, and that any component of Vj n G meets at most one arc in %. Elements in 7f 
(resp. Ce) are therefore the vertices (resp. edges) of a compact connected l-complex, 
and we obtain Kj by adding to it the half-geodesics joining a cusp c to the vertex in 
the component of Vj - G adherent to A,. 

,,n, \ 

:: 
Fig. 5. 

Remark. There is a proper retraction from oj to KP Furthermore Kj can be 
completed into a foliation 9j of Uj tangent to the boundary and transverse to G, 
whose singularities are vertices of & If 4 has “2-prong saddles”, like u on Fig. 5, we 
get rid of them by a small modification; the foliations 4 and the lamination y then fit 
together into a foliation g,,, of A4 which satisfies y(9,,,) = y. The thick leaves of ~(9~) 
are precisely the geodesics isolated on one side. One passes from 9,,, to the desired 9 
by opening up leaves f of .9,,, for which yCf) belongs to e. = e - e(9,,,), and by 
collapsing onto Kj components of Uj - Kj bounded by geodesics in e(9,J - e. 

Let P be one of the pairs of pants bounded by G. The surface P contains oae or 
two vertices of the complexes Kj (we do not count vertices adherent to only two 
edges like u on Fig. 5). The possible patterns for the edges issued from these vertices 
are pictured on Fig. 6 (up to a permutation of the components of 6P). These edges 
divide SP into 4 or 6 open intervals (I,_ 12. with 1 5 k I 2 or 3, and there exist 

homeomorphisms uk: 4 + I; such that, if p E 4 belongs to a geodesic g E y, then the 
point r+(p) E 1; is the other endpoint of the arc of g II P containing p. Endpoints of 
intervals 4 or 1; will be called base points on the gi to which they belong. 

Let ]p, q[ be a component of gi - y; it contains exactly one point k belonging to a 
complex KP Three cases are possible: if neither p nor q belongs to e, we want to 
collapse ]p, q[ to a point; if p and q both belong to e, we do not need to do any 
collapsing; if p (resp. q) belongs to e but q (resp. p) does not, we want to collapse 
]k, q[ (resp. lp, k[) to a point. 

So we consider on gi all the open intervals ]a, b[ disjoint from y, such that either a 
and b belong to y - e or a (resp. b) belongs to y - e and b (resp. a) belongs to some 
&. The complement of the union of these intervals is closed and has no isolated point 
(because every isolated geodesic in y is thick); therefore we can collapse each of 
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Fig. 6. 

these intervals-to a point. More precisely, there is a continuous order-preserving map 
xi: gi + gj such that Xi@,) = Xi@?) if and only if pI and p2 belong to an interval [a, b]. 

We now consider eo, the set of geodesics in e that are not isolated on any side in y; 
note that y - e. is dense in y and that the restriction of Xi to gi n e. is injective. In 
order to open up points of Xi(gi fl eo), we orient gi and choose a map yi: gi + gi which 
is injective, increasing, right-continuous, and whose points of discontinuity are 
exactly the points of Xi(gi n eo). We then define Z; = pi oyi oxi, where pi is an orien- 
tation-preserving homeomorphism of gi chosen so that the base points of gi are fixed 
points of Zi (such a pi exists because yi OX; is injective on the set of base points). Note 
that each Ik or 1; contained in gj is sent into itself by Zi. 

Let P be a pair of pants bounded by G, and &: Ik -+I; as above. The interval 4 
(resp. 1;L) is contained in a geodesic gi (resp. gr), and there exists a homeomorphism 
uk: & + 1; such that ok(zi(p)) = Zir (&(p)) for p E & - eo (equality alS0 holds for 
p E eo, provided we replace Zi(p) by the left-limit of Zi at p if necessary). 

Now there exists on P a foliation gp transverse to the boundary such that, if one 
of the homeomorphisms uk is defined at a point p E SP, then uk(p) belongs to the 
same leaf as p ; we also require that the 4 or 6 edges used to define the intervals Ik and 
Ii (see Fig. 6) are leaves of 9$. Once the uk’s are chosen, these conditions determine 
9$ up to conjugation by a homeomorphism isotopic to the identity rel. SP. 

The foliations .9p fit together into a foliation 9’ on A4, which by construction 
satisfies ~(9’) = y and e(9’) = e. Since every leaf meets G, this foliation has no Reeb 
component. But, for an arbitrary choice of the homeomorphisms uk, there is no reason 
why 9’ should satisfy condition (*) if e contains compact geodesics. So we consider, 
for each compact geodesic g E e, the two extreme leaves p and f’ such that 
r(_?‘) = I = g. We modify 9’ in the annulus bounded by p and f’, so as to make all 
leaves compact; this does not change ~(9’) or e(F). After performing this operation 
for each compact g in e (there are only finitely many of them), we finally get the 
desired foliation 97 0 

$7. PROOF OF 1.2: UNIQUENESS OF 9F 

Let y, e, and geodesics gi be as in $6. We want to prove that, up to equivalence, 
there is only one foliation 9 with y(9) = y and e(9) = e. 
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LEMMA 3. Any foliation 9 such that ~(27 = y is equiualent to (1 foliation transverse 
to the curves gi. 

Proof of Lemma 3. We use an induction argument. Suppose we have found a 
foliation 9p equivalent to 9 and transverse to gi for 1 5 i I p (p may be equal to 0, in 
which case 9” = 9). We shall show how to construct 9p_,; then 5;z_j will be the 
desired foliation. Let N be the component of M -(g, U . . . U g,) which contains 

g,+1. 
Assume first that 9 (and therefore also 9+,,) is a measured foliation. Then it is proved 

in ([4], Proposition II.6 p. 81, exposC 5) that 9D can be modified in N in order to give 

an equivalent foliation spp+, for which g,,, is transverse or is a leaf cycle or collapses 
onto a union of saddle connections. But in the latter two cases g,,,, either is a leaf of 
y(9) or is disjoint from y(9), contradicting the definition of the gi’s (see the 
beginning of 06). 

The foliation SD+, is therefore transverse to g,,,, and also to g; for i between 1 and 
p, since s6 and FD+, differ only on N. In other words, we see that, to prove Lemma 3, 
it now suffices to extend Proposition II.6 of [4] to a general foliation. 

In the proof of that proposition, the existence of the transverse measure is used 
only to prove the “lemme de stabilitt?” (11.4, p. 80). We shall therefore complete the 
proof of Lemma 3 by showing in §8 that the lemme de stabilitC (or “extension 
lemma”) can be applied to any foliation with no Reeb component. q 

By Lemma 3, all we need to show is that two foliations 9, and ,9? with 
~(9,) = ~(9~) = y and e(9,) = e(4) = e are equivalent, provided they are both trans- 
verse to G. We can assume without loss of generality that all saddle connections of 9, 
and 9$ meet G; then we shall prove that 9, and 9: are actually isotopic. 

For i between 1 and 3v - 3, choose a component gi of p-‘(gi). We shall presently 
construct a map &i from gi to itself. First assume e = 0. Then there is a bijective 

correspondence between leaves of 9, (resp. 4) and leaves of y. If x E ii belongs to a 
non-singular leaf h, of .@,, let &(x) be the point where gi meets the leaf h? of $> such 
that y(hz) = y(h,). If x belongs to a separatrix of g,, then it belongs to exactly two 
leaves h, and hi. Let h2 and hi be the leaves of g2 such that y(hz) = y(h,) and 

y(h$ = y(hl). No leaf of p-‘(y) meets gi between Si II y(h,) and Si n y(h;); therefore 
h2 and hi meet gi at the same point, which we call &(x). 

Now suppose e is not empty. Let g be in e, and let g be a component of p-‘(g). 
Leaves h of 9, such that y(h) = 2 are those located between two extreme leaves hy 
and hl (see 03); we can parametrize them by a number d,(h) between 0 and 1. We now 
want to extend the definition of d, to all leaves h, such that y(h,) E p-‘(g), in an 
equivariant way; if u E n,M, then d,(a(h,)) = d,(h,). If g is not compact, this is 
possible because no non-trivial g sends 2 to itself. If g is compact, we have 
d,(o(h)) = d,(h) for transformations (+ sending g to itself and leaves h with y(h) = 2, 
because 9, satisfies condition (*); the extension is therefore possible. Similarly, define 
d,(hJ for leaves of g2 such that y(hJ E p-‘(g), being careful to number hl and hi so 
that hi is located with respect to hi on the same side as hy with respect to hl. 

Since g was arbitrary in e, we can attach a number dk(hk) to any leaf hk of $k such 
that y(hk) E p-‘(e). This allows us to define cUi in the following way: if x belongs to a 

leaf h_, of 4, such that y(h,) E p-‘(e), we define &i(X) as before; if y(h,) E p-‘(e), we 

define &i(X) as the intersection of gi with the leaf h2 of g2 such that y(h,) = y(h)) and 
d,(h?) = d,(h,). For points x belonging to two leaves of @,, one checks as in the case 
e = 0 that the two possible definitions of G;(X) coincide. 

The map ~5~ so defined is an order-preserving bijection from a, to itself, i.e. a 
homeomorphism. It commutes with the covering transformations leaving 2; invariant, 
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and therefore induces a homeomorphism (Y; on g,. Note that, because g,, .% and the 
functions dk are rr,M-equivariant, the map ai does not depend on the choice of & in 
P-‘(gi)..We can extend ai to a homeomorphism Ej of M, equal to the identity outside 
of a small neighborhood Vi of gi, isotopic to the identity relatively to M - Vi, and 
whose lifting to a equal to the identity outside of p-‘( Vi) induces pi on Q. 

Let E =EI~&i2~~~~~(Y3U-~. Then on each pair of pants P,,, bounded by G the 
restrictions of 9, and E-‘(S$) are conjugate by a homeomorphism of P,,, isotopic to 
the identity relatively to SP, (because 9, and gz have no saddle connection in P,,,). 
This proves that 9, and SI are isotopic. 0 

Remark. For measured foliations, one can give a direct proof of the uniqueness of 
9, using the fact that measured foliations which are measure-equivalent are indeed 
equivalent ([4, 161); but proving this fact requires a lot of work, including a lemma 
analogous to Lemma 3. 

88. THE EXTENSION LEMMA 

The question we are considering here is the following: given a segment A 
contained in a leaf of 9, how far can A be pushed onto neighboring leaves? The 
similar problem for non-singular codimension 1 foliations of 3-manifolds has been 
studied by Novikov [93 (for A a disc), Roussarie [12] (for A an annulus) and Thurston 
[15] (for A any compact surface). The obstruction to pushing A is in that case either 
the existence in A of a loop having non-trivial holonomy or the existence of a compact 
leaf belonging to a “dead-end” component (e.g. a Reeb component). 

For foliations of surfaces, the “extension lemma” has been proved in [4] for 
measured foliations, in [lo] for orientable foliations, and in [l l] for foliations whose 
singularities are tripods and thorns, with no connection between singularities and no 
compact leaf. 

Here is a general statement of this lemma: 

EXTENSION LEMMA. Let A4 be a closed orientable surface, and 9 a foliation whose 

singularities are saddles or thorns. Let A0 = [ao, b,] be a compact interval contained in 
a leaf of 9, and [ao, aI], [b,, b,] two disjoint intervals transverse to 9. Suppose the 

local holonomy map 9 such that +$a,,) = bO can be extended to a homeomotphism from 
[a,,, a,[ onto [b,, b,[, yielding a continuous family of arcs At = [a,, b,] contained in 
leaves of 9 (for 0 I t < 1). Then one of the following assertions is true: 

(i) 9 can be continuously extended to al, yielding an embedded arc A, joining al to 
b, on a leaf of 9. 

(ii) cp can be extended to al, but the limit of the arcs A, us t + 1 contains at least 
one singularity of 9 or is not an embedding or both (see Fig. 7). 

I 
a0 

Fig. 7. 
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Fig. 8. 

(iii) a, and b, belong to the boundary of a Reeb component (see Fig. 8). 

Remark. This lemma also applies when M has non-empty boundary, if each 
component of 6M is either transverse to 9 or is a leaf. 

Proof. (I am grateful to Harold Rosenberg for helping me write a correct proof) 
Starting on the same side of a, as the arcs A, (the r.h.s. of Fig. 7), follow the leaf 

containing al, turning around if reaching a thorn and making a right turn towards the 
adjacent separatrix if reaching a saddle. Call f this half-leaf (or union of leaves). 

Suppose first that it meets infinitely often some closed transverse curve C. The 
cardinality k(t) of A, rl C is constant near each t for which neither a, nor b, belongs 
to C, and therefore there exists a number K independent of t such that A, meets C at 
most K times. Choose x E f such that f meets C at least K + 1 times between a, and 
x, and fix a transverse interval J containing x. For t close to 1, the segment A, does 
not meet J, and therefore 6, has to be on f between a, and x, proving that (i) or (ii) 
holds. 

If f spirals towards a compact leaf 6, so do leaves through a, for t close to 1. Let 
8’ be a transverse curve close to 8 (on the same side of 8 as f), and let C be a 
transverse arc with one endpoint on 0 and the other one on 8’-f. For t close to 1, the 
arc A, meets 8’ in at most one point, and this point is close to f II 0’; therefore A, 
cannot contain any endpoint of C, and we can apply the same argument as before. 

We now assume that neither (i) nor (ii) holds. Then we know that f (and by 
symmetry also the leaf f’ through b,) are compact. Note that we can have f = f’ only 
if, as t goes to 1, the points a, and b, approach f from opposite sides. 

Consider a point a, for r close to 1, and follow its leaf fr towards the left. Since f 
is compact, one hits [a,,, a,] again at a point a, (see Fig. 8). We can find r arbitrarily 
close to I with s > r: if not, the supremum of d(x,f) for x E A, goes to 0 as t tends to 
1 (d is the distance given by some Riemannian metric on M); therefore 6, belongs to 
f, f’ = f, and (i) and (ii) holds. 

The curve obtained by following f, from Q, to a,, then [a,,, a,] from a, to a, can be 
deformed into a closed transverse curve C. Similarly, construct a transverse curve C’ 
close to f’, meeting [b,, b,] at a point b, (r’ 3 r), and disjoint from C. 

Leaves meeting C’ also meet C and define an isotopy between these two curves; 
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the annulus A bounded by C and c’ is contained in the union of the arcs A, 

(s 5 t < 1). Since neither (i) nor (ii) holds, A is not located between C and f or C’ and 

f’, and the union of A with the regions between C and f (resp. c’ and f’) is the desired 

Reeb component. Note that its boundary does not necessarily consist of embedded 

circles if f or f’ contains singularities of 9. 0 
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