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NON-NESTING ACTIONS ON REAL TREES

GILBERT LEVITT

A

The theory of isometric group actions on R-trees is extended to actions by homeomorphisms with the
following non-nesting property : no group element maps an arc properly into itself. A finitely presented
group acting freely by homeomorphisms on an R-tree is free abelian or splits over a (possibly trivial) cyclic
group.

Introduction

There is now a well-established theory for groups acting isometrically on R-trees.

This Rips theory, combined with Bass–Serre theory for groups acting on simplicial

trees, has found many applications, for instance to hyperbolic groups (see the recent

survey [14]). A famous example is the finiteness of the group Out (G) when G is a

hyperbolic group that does not split over a virtually cyclic subgroup.

Other applications require studying non-isometric group actions on R-trees,

namely actions by arbitrary homeomorphisms, or affine actions (every g `G multiplies

the metric by some λ
g
`R*).

For instance, fixed point theorems in spaces such as Culler–Vogtmann’s outer

space yield affine actions of semi-direct products (see [15]). Transversely affine

foliations lead to affine actions on R-trees obtained as leaf spaces (see [11]).

Furthermore, Bowditch has shown in [2] that a one-ended hyperbolic group G

whose boundary has a global cut point admits a natural action by homeomorphisms

on an R-tree, and one wants to deduce that G splits over a virtually cyclic subgroup.

This was our main motivation, as suggested by a question of Bestvina. A slight

extension of Theorem 1 below was used by G. A. Swarup [19] in his proof of the ‘cut

point conjecture’ (see Corollary 6). Our paper may be compared with [3], which was

prepared at about the same time and obtains the splitting through actions on

‘monotone trees ’.

Here we bring into the theory a famous theorem about foliations proved by

Sacksteder in 1965. We show that a non-isometric action of a group G on an R-tree

gives as much information about G as an isometric one, provided it satisfies the

following non-nesting property introduced by Bestvina: no group element maps an arc

properly into itself (gIX I for I a non-degenerate segment implies gI¯ I ).

T 1. If a finitely presented group G admits a non-tri�ial non-nesting action

by homeomorphisms on an R-tree T, then it admits a non-tri�ial isometric action on

some R-tree T
!
. A subgroup fixing an arc in T

!
fixes an arc in T.
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An action is said to be non-tri�ial if no point of T is fixed by the whole group.

Recall [1, 14] that a finitely presented group G with a non-trivial, stable, isometric

action on an R-tree T splits over an extension of an abelian group by a subgroup

fixing an arc of T. We then obtain, for instance, the following.

C. If a finitely presented group G acts freely by homeomorphisms on an

R-tree, then G is free abelian or G splits o�er a (possibly tri�ial ) cyclic group.

Note that a free action is always non-nesting. Liousse [11] has constructed free

affine actions of groups that do not admit free isometric actions (for instance, the

group with presentation ©a
"
, a

#
, a

$
, b

"
, b

#
, b

$
; [a

"
, b

"
]¯ [a

#
, b

#
]¯ [a

$
, b

$
]ª). There is no

known classification of finitely presented groups that can act freely by

homeomorphisms on R-trees.

C. If a hyperbolic group G admits a non-tri�ial non-nesting action with

�irtually cyclic arc stabilizers, then G splits o�er a �irtually cyclic group.

Let us now explain Sacksteder’s theorem, and sketch how it is used to prove

Theorem 1.

Sacksteder’s main results may be summarized as follows (see [16, 8]). Let & be a

codimension one foliation of class C # on a closed manifold M. Then e�ery exceptional

minimal set contains a leaf with non-tri�ial linear holonomy; if & has no holonomy, then

& is topologically conjugate to a foliation defined by a closed differential one-form.

These results are proved by analysing the holonomy pseudogroup of &. Recall

that a pseudogroup on a space X is a collection Γ of homeomorphisms γ :U!V

between open subsets of X, which is closed under certain operations (composition,

inversion, restriction, extension).

We shall use the following statement.

T 2 [16, Theorem 4]. Let Γ be a pseudogroup of homeomorphisms of the

circle S ". If e�ery orbit is dense and no γ `Γ sends an inter�al properly into itself, then

there exists a Γ-in�ariant probability measure.

In order to be self-contained, we shall rephrase this theorem without mentioning

pseudogroups (see Theorem 5).

Reducing Theorem 1 to Theorem 2 requires a few steps. First, using a

construction due to Rips, we obtain a finite system +¯²φ
i
:A

i
!B

i
´ of

homeomorphisms between closed subtrees of a compact tree K with finitely many

vertices. We prove that it suffices to construct a non-trivial non-atomic +-invariant

measure on K. Passing from + to a pseudogroup as in Theorem 2 involves collapsing

each component of the complement of an infinite minimal +-invariant set. A

technical difficulty arises from the fact that domains of elements of + are compact,

while domains of elements of a pseudogroup are required to be open. Though we do

not use this language, readers familiar with foliations will easily recognize equivalence

of pseudogroups (introduced by Haefliger in [9]), and the pseudogroup induced on a

closed curve transverse to a foliation.

A. We are grateful to M. Bestvina, who suggested studying

non-nesting actions, and to B. Bowditch for stimulating e-mail exchanges. This paper

was prepared in part during a visit to Cornell University.
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1. Preliminaries: non-nesting actions on trees, systems of maps

Non-nesting actions on R-trees. An R-tree is a metric space T such that, given

x1 y in T, there exists a unique arc with endpoints x and y, and this arc is

isometric to a subinterval of R (recall that an arc is a space homeomorphic to [0, 1]).

We let [x, y] be the arc between x and y if x1 y, or the point ²x´ if x¯ y. An R-tree

may also be defined as a connected 0-hyperbolic metric space.

R. Since we shall be studying actions by homeomorphisms, the relevant

structure is the underlying topological structure. It may be characterized as being

metrizable, uniquely arc-connected, and locally arc-connected [12].

Let G be a group acting by homeomorphisms on an R-tree T. We shall identify

an element g `G and the corresponding homeomorphism of T. The element g `G is

elliptic if the fixed point set Fix g is non-empty, hyperbolic otherwise.

The action is tri�ial if some x `T is fixed by the whole group. It is non-nesting if

no g `G maps an arc properly into itself. This is equivalent to saying that every elliptic

g acts freely on π
!
(TcFix g). Every isometric action, every free action, is non-nesting.

Non-nesting actions have the same basic properties as isometric actions, which are

summarized in the following statement.

T 3. Let T be an R-tree with a non-nesting action of a group G.

(1) Let g `G be elliptic. Then Fix gZT is a closed subtree. If x aFix g, then

Fix gf[x, gx] consists of precisely one point.

(2) If g is hyperbolic, then it has an axis: there is a proper embedding i :R!T such

that A¯ i(R) is g-in�ariant and the action of g on A is topologically conjugate to a

translation.

(3) If G is finitely generated and the action is non-tri�ial, then there are hyperbolic

elements. The union T
min

of the axes of the hyperbolic elements is the smallest non-empty

G-in�ariant subtree.

Proof. This theorem is well-known for isometric actions (see [13, 4, 17, 18]). We

sketch the arguments for completeness, insisting on the differences with the isometric

case.

The first part of assertion (1) is clear : if g fixes two points x, y, then it fixes the

whole arc [x, y]. Given x aFix g, choose x
!
`Fix g, and define u by [x

!
,x]fFix g¯

[x
!
, u]. Non-nesting implies Fix gf[x, gx]¯²u´.
Now suppose that g is hyperbolic. Choose x `T, and define � by [x, g−"x]f[x, gx]¯

[x, �]. The homeomorphism g sends [x, �] into [gx,x]. Since it has no fixed point, we

have g� ` [�, gx]. Then A¯5
n`Z gn([�, g�]) is the axis of g. Its embedding into T is

proper, since otherwise there would be a limit point y¯ lim gn� as n goes to ­¢ or

®¢. Such a point would be fixed by g.

As in the isometric case, assertion (3) is proved by induction on the number of

elements of a generating system ²g
"
,… , g

n
´ of G. We assume that every g `G is elliptic,

and we show that the action is trivial. Using the induction hypothesis, choose x
!
fixed

by g
"
,… , g

n−"
. Let x be the unique point such that [x

!
,x]fFix g

n
¯²x´. If the action

is not trivial, then there exists i with x aFix g
i
. Then Fix g

i
fFix g

n
¯W, and it is easy

to deduce that g
n
g
i
is hyperbolic, a contradiction.
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Define T
min

as the union of all axes. It is shown to be a subtree as in the isometric

case: if g and h are hyperbolic with disjoint axes, then gh is hyperbolic and its axis

meets both the axis of g and that of h. The other properties of T
min

are clear.

Systems of maps. We define a finite tree as a space homeomorphic to a simplicial

tree with finitely many vertices and edges.

Now let X be a compact space homeomorphic to a finite 1-complex (in fact, X will

be a finite tree, or a disjoint union of arcs or circles). Any contractible subset of X is

a subtree. (The subtrees used below will be either open intervals or finite trees.)

We define a system of maps on X as a finite family +¯²φ
i
:A

i
!B

i
´
i=",

…,k
of

homeomorphisms between subtrees of X. The system is closed (respectively open) if

all subtrees A
i
,B

i
are closed (respectively open) in X.

A +-word is a reduced word in the letters φ
i
and φ−"

i
. We usually view it as a

homeomorphism between (possibly empty) subtrees of X. The system is non-nesting

if no +-word takes an arc properly into itself.

An open system may be viewed as a generating set for the pseudogroup Γ

consisting of all homeomorphisms ψ between open subsets of X such that for every

x in the domain of ψ, the map ψ coincides with some +-word on a neighbourhood

of x.

Let + be any system of maps. Two points x, y `X are in the same orbit if some

+-word takes x to y. A subset of X is in�ariant if it is a union of orbits, minimal if

it is compact, invariant, non-empty, and minimal for these three properties. Every

non-empty invariant set contains a minimal set.

If Y is a subtree of X, or X itself, then a �ertex of Y is a point � of the closure Ya
such that Ya is not a manifold near �. An orbit of + is singular if it contains a vertex

of X or of some A
i
or B

i
, regular otherwise.

A measure µ on X is in�ariant if φ
i
takes the restriction µrA

i
onto µrB

i
, for i¯ 1,…,

k. The support of µ is the complement of the largest open set with measure 0. The

support of an invariant measure is compact and invariant.

The rest of the paper is divided into two parts. In Section 2 we reduce Theorem

1 to the following result.

P 4. Let + be a non-nesting closed system of maps on a finite tree K.

Assume that + has an infinite orbit. Then there exists a +-in�ariant probability

measure µ on K, with no atom.

In Section 3 we prove Proposition 4, using Sacksteder’s theorem rephrased as

follows.

T 5. A non-nesting open system of maps on S " with e�ery orbit dense

admits an in�ariant probability measure.

2. Trees and measures

We prove Theorem 1, assuming Proposition 4. We start with a general

construction. Let T be an R-tree with an action of a finitely presented group G by

homeomorphisms. Fix a finite presentation of G, with generators ²g
"
,… , g

k
´. Let q be

the maximal length of a relation.
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Choose x
!
`T. Let K be the convex hull of the set of points gx

!
, for g a word of

length % q in the generators and their inverses. It is a finite tree.

For i¯ 1,… ,k, let A
i
¯Kfg−"

i
K and B

i
¯ g

i
KfK, and let φ

i
:A

i
!B

i
be the

restriction of the action of g
i
. We denote by + the associated system of maps on K.

It is closed, and it is clearly non-nesting if the action on T is.

If the action of G on T is isometric, then each φ
i
is a partial isometry of K. In other

words, it preserves the ‘Lebesgue measure’ induced on K by the metric of T.

Conversely, we shall show how to construct an isometric action of G on an R-tree

from a +-invariant measure on K.

First we define a foliated 2-complex (ΣG ,&G ) as follows (see, for example, [7, 5] for

similar constructions).

Consider the disjoint union of G¬K and the G¬A
i
¬[0, 1] (i¯ 1,… ,k).

Corresponding to each edge g®gg
i
in the Cayley graph of G, glue ²g´¬A

i
¬[0, 1] to

G¬K by identifying (g,x, 0) with (g,φ
i
(x)) and (g,x, 1) with (gg

i
,x) for x `A

i
. We let

ΣG be the resulting 2-complex. We identify each ²g´¬K or ²g´¬A
i
¬[0, 1] with its image

in ΣG , and ²1
G
´¬K with K. Note that there is a natural projection from ΣG to the Cayley

graph. It is a homotopy equivalence.

The leaves of the foliation &G on ΣG are defined as the classes of the smallest

equivalence relation on ΣG such that each segment ²g´¬²x´¬[0, 1] is contained in a

class (for g `G, x `A
i
).

Left translation in G induces a free action of G on ΣG . This action preserves &G and

defines a regular G-covering whose base is a compact foliated 2-complex (Σ,& ) with

fundamental group free of rank k. The tree K is naturally embedded in Σ, and the

intersections of leaves of & with K are the orbits of +.

The inclusion of K into T extends to a G-equivariant resolution map f :ΣG !T

sending every leaf of &G to a point : simply define f(g,k)¯ gk for g `G and k `K, and

f(g,x, t)¯ gφ
i
(x)¯ gg

i
x for g `G, x `A

i
, t ` [0, 1]. Note that each gKZΣG is taut in the

sense of [7] : it meets a given leaf of &G at most once.

Also note that π
"
ΣG is generated by ( free homotopy classes of ) loops contained in

lea�es of &G . This follows from the way we defined K in the beginning of this section,

using finite presentability of G : the defining relations of G have length at most q, and

any loop of length % q in the Cayley graph may be lifted to a loop in ΣG contained in

a leaf of &G .
Now let µ be a +-invariant probability measure on K, with no atom. Extend µ

to a G-invariant measure on G¬K. Since each φ
i
preserves µ, this defines a holonomy-

invariant transverse measure of &G : the measure of a transverse arc ²g´¬J¬²t´Z
²g´¬A

i
¬[0, 1] is µ(J )¯µ(φ

i
(J )).

We may then define the µ-length of any path γ in ΣG as the total mass of the

measure induced on γ, and the pseudo-distance d(u, �) between two points of ΣG as the

infimum of the µ-lengths of paths from u to �. We define T
!
as the associated metric

space, obtained by identifying u, � whenever d(u, �)¯ 0 (this happens in particular if

u and � belong to the same leaf). The action of G on ΣG induces an isometric action of

G on T
!
.

Following [5], one may also view T
!
as the metric space associated to the pseudo-

distance δ defined on G¬K by

δ((g,x), (h,y))¯ inf ²µ([x,x
p
])­µ([φε

p
ip

(x
p
),x

p−"
])­…­µ([φε

#
i
#

(x
#
),x

"
])­µ([φε

"
i
"

(x
"
), y])´ ,

where the infimum is taken over all words g ε
"
i
"

…g ε
p
ip

representing h−"g (with ε
j
¯³1)

and all points x
j
in the domain of φ ε

j

ij

.
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We note that T
!
is an R-tree, and d(x, y)¯µ([x, y]) for x, y `K (viewed as a subset

of ΣG ). These assertions are completely similar to Corollary III.5 of [10] and Lemma

3.3 of [7], respectively. They are based on the fact that π
"
ΣG is generated by (free

homotopy classes of) loops contained in leaves of &G , and on tautness of K. Indeed,

the same arguments as in [10] and [7] apply, though µ is not assumed to have full

support.

After this general construction, let us be more specific and consider a non-trivial

non-nesting action of G. Recall that + is then non-nesting.

Suppose that the +-orbit of some x `K is regular and finite. Since + is non-

nesting, points near x also have finite orbits, with the same number of elements (or

twice that number if some +-word fixes x and reverses orientation).

If all orbits are finite, then all leaves of the foliation & on the compact 2-complex

Σ are compact, and we may find a +-invariant measure µ with full support (and no

atom). The associated tree T
!
is simplicial (it is simply the space of leaves of &G ), and

the map f :ΣG !T factors through T
!
. Theorem 1 is trivial in this case.

If there is an infinite orbit, Proposition 4 provides a +-invariant probability

measure µ on K, with no atom.

Let T
!
be the R-tree associated to µ as before. We show that the isometric action

of G on T
!
satisfies the required conditions. Unfortunately, the map f :ΣG !T need not

factor through T
!
.

To avoid confusion, we denote by K «¯ ²1
G
´¬K the preferred copy of K in ΣG . We

denote by x, x« corresponding points in K and K «, and S «ZK « corresponding to the

support S of µ. Note that S has no isolated point, therefore it consists of uncountably

many orbits.

Let π :ΣG !T
!
be the canonical projection. Since d(x«, y«)¯µ([x, y]) for x«, y« `K «,

the restriction of π to K « is monotonous: it simply collapses each component of K «cS «
to a point. In particular, the restriction of π to S « is finite to one, and the image

K
!
¯π(K «)¯π(S «) is a finite tree in T

!
.

Let e be an edge of K meeting some regular +-orbit infinitely often. Let

w¯φε
"
i
"

…φε
p
ip

be a +-word defined on some non-degenerate subarc JZ e whose

interior meets S, such that w maps J into e in an orientation-preserving way. The

element g ε
"
i
"

…g ε
p
ip

`G acting on T
!
is hyperbolic : its translation length is positive since it

equals µ([y,wy]) for any y ` J. This proves that the action of G on T
!

is non-trivial.

We now consider arc stabilizers in T
!
. Given an arc α

!
ZK

!
, we let α«¯ [u«, �«] be

the smallest arc contained in K « that projects onto α
!
under the collapsing map πrK «.

Note that u«, �« are not isolated in α«fS «.
Suppose the action of g `G on T

!
fixes α

!
pointwise. We claim that the action of

g on T fixes α pointwise (α is the arc corresponding to α« in the subtree KZT ).

Because of continuity and non-nesting, it is enough to prove gx¯x for every x1
u, � in Sfα.

Since g fixes α
!
, we have d(u«, gu«)¯ d(�«, g�«)¯ 0. Choose arcs γ

u
from u« to gu«

and γ
v

from �« to g�« whose µ-lengths are much smaller than µ([x, u]) and µ([x, �]).

Consider the loop λ consisting of α«, γ
v
, (gα«)−", γ−"

u
. Arguing as in [7, pp. 640–641], we

map a compact planar surface P into ΣG , with one boundary component going to λ and

the others going into leaves of &G . Analysing the foliation induced on P shows that

x« and gx« belong to the same leaf of &G , thus proving the claim.

Every arc in T
!
is contained in the union of finitely many images hK

!
, h `G. The

claim then implies that any subgroup of G that fixes an arc in T
!

also fixes an arc

in T.
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As pointed out by G. A. Swarup, one may strengthen the statement of Theorem

1 as follows.

C 6. Gi�en a finite collection of finitely generated subgroups G
j
ZG,

each fixing a point of T, one may require that each G
j
fixes a point of T

!
.

Proof. Use the above construction, replacing K by a larger finite tree.

Specifically, choose r& q such that each G
j

may be generated by elements of

length% r, and choose x
j
`T fixed by G

j
. If K contains all points gx

j
, for g a word

of length% r, then the image of x
j
in T

!
is fixed by G

j
.

3. The in�ariant measure

We prove Proposition 4. We perform several reductions.

3.1 From + to ,. Let +¯²φ
i
:A

i
!B

i
´
i=",

…,k
be a non-nesting closed system

on a finite tree, with at least one infinite orbit. As was pointed out in Section 2, non-

nesting forces a special structure for the set of finite regular +-orbits. In particular,

the union of all finite regular orbits is a finite union of open intervals. Its complement

K
"

is a finite union of closed subtrees, not all of them points.

We disregard isolated points of K
"

and let D be the disjoint union of all closed

edges of K
"
. It is a multi-interval in the sense of [6], that is, a finite disjoint union of

compact intervals. We denote by δD its set of endpoints, and intD¯DcδD.

The system of maps + naturally induces a system , on D (compare [6, Parts 2

and 3]) : replace each φ
i
by the collection of its restrictions to edges of K

"
, keeping only

those maps whose domain contains more than a single point (we may also need to

split domains at preimages of vertices of B
i
). The system , is closed and non-nesting,

and every regular orbit is infinite. Furthermore, every ,-invariant probability

measure without atoms corresponds to a +-invariant probability measure (supported

on K
"
). Our goal is then to construct an ,-invariant measure.

3.2 From , to -. Let ,I be the open system obtained by replacing each

element φ :A!B of , by its restriction to the open interval Ac²endpoints´.
We start with the hardest case, when every minimal ,I -invariant set is a finite

singular orbit (recall that we want to apply Theorem 5, which requires dense orbits).

There are then finitely many minimal sets, among which are the endpoints d ` δD. By

splitting D (thus changing , and ,I ), we may assume that the points of δD are the

only minimal sets of ,I . Note that the closure of every ,I -orbit contains an end-

point of D.

For every d ` δD, we choose an ,-word w
d

defined on a non-degenerate closed

interval I
d
containing d, and sending d to a point dh ` intD ; such a word exists because

otherwise non-nesting of , would imply finiteness of orbits near d.

Let E be the set of points p ` δD such that some ,I -orbit accumulates on p. For

every p `E, we choose points x
p
, y

p
` I

p
such that some ,I -word τ

p
sends x

p
to y

p
in

an orientation-preserving way. Since every ,I -orbit in intD accumulates on E, we

may require, furthermore, that for every d ` δD, the orbit of dh meets the union of all

intervals (x
p
, y

p
), p `E. After changing w

d
, we may assume that every dh belongs to

some (x
p
, y

p
). Note that every ,I -orbit in intD meets some (x

p
, y

p
) infinitely often.
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For p `E, we define C
p

to be the circle obtained by identifying the endpoints of

[x
p
, y

p
], and we let C be the disjoint union of these circles. Our next goal is to construct

a non-nesting open system of maps - on C with e�ery orbit infinite, in such a way

that an --invariant measure on C provides an ,-invariant measure on D. (To be

precise : the pseudogroup generated by - on C will be equivalent in the sense of

Haefliger [9] to the pseudogroup generated by ,I on intD.)

First we need to construct a finite family 0 of homeomorphisms γ :U!V between

open intervals UZ intD and intervals VZC. It will consist of three types of maps.

For each p `E, we include the natural map π
p

from (x
p
, y

p
) to C

p
. Then, for each

p, we consider the points x
p
, y

p
and their common image z

p
in C. Restrict τ

p
to a

homeomorphism between a small neighbourhood X
p

of x
p

and a neighbourhood Y
p

of y
p
. Since τ

p
preserves orientation, both these neighbourhoods are naturally

homeomorphic to a neighbourhood Z
p
of z

p
in C

p
. We include the maps X

p
!Z

p
and

Y
p
!Z

p
.

The ranges of the maps constructed so far cover C. If the domains cover intD,

then we may stop. Otherwise, we need a third type of maps. Let x ` intD. Some

,I -word α
x
sends a neighbourhood U

x
of x to an open interval V

x
contained in some

(x
p
, y

p
). The word α

x
may be chosen to be constant near each endpoint of D. By

compactness, we deduce that intD may be covered by finitely many U
x
. We include

the corresponding finite set of maps from U
x

to π
p
(V

x
)ZC

p
.

This defines the family 0. We now use it to carry ,I over to a system - on C.

Let γ
"
:U

"
!V

"
and γ

#
:U

#
!V

#
be two elements of 0. If U

"
fU

#
1W, then γ

#
γ−"

"
is

a homeomorphism between non-empty subintervals of C. We include it in -.

Similarly, for θ `,I , we include γ
#
θγ−"

"
if its domain is non-empty. We define - as the

set of all maps thus obtained, for all possible choices of γ
"
, γ

#
in 0 and θ in ,I . It is

an open system of maps on C.

The construction of 0 and - was done in such a way that the following

properties hold: given γ
"
, γ

#
in 0 and an ,I -word w, given x in the domain of γ

#
wγ−"

"
,

there is an --word equal to γ
#
wγ−"

"
on a neighbourhood of x ; similarly, given an --

word w, and y in the domain of γ−"

#
wγ

"
, some ,I -word coincides with γ−"

#
wγ

"
near y.

Every --orbit is infinite, because every ,I -orbit in intD meets some (x
p
, y

p
)

infinitely often. Also note that - is non-nesting because every orientation-preserving

--word that has a fixed point is a restriction of the identity. Furthermore, any --

invariant probability measure with no atom lifts to an ,I -invariant measure on intD.

The existence of the words w
d
(which depends on non-nesting of , ) implies that this

measure has finite total mass, hence extends to an ,-invariant measure on D.

We have now reduced our problem to finding an --invariant measure with no

atom (assuming that every minimal set of ,I is infinite).

3.3 From - to .. Let FZC be a minimal set of -. It is infinite and has no

isolated point. For each component C
p
of C that meets F, we choose a collapsing map

ρ
p
:C

p
!C!

p
, where C!

p
is another circle and ρ

p
sends each component of C

p
c(FfC

p
)

to a point. Let C « be the union of the circles C!
p
.

Given an element φ :A!B of - whose domain meets F, we consider the images

A«,B« of A,B in C «, and the natural homeomorphism φ« between the interiors of A«
and B« (note that A«,B« are non-degenerate intervals, but they need not be open). We

let . be the collection of these φ«, an open system of maps on C «. It is non-nesting

and every regular orbit is dense, because every --orbit contained in F is dense in F,

but there may be finite singular orbits.
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3.4 From . to /. Choose an interval [x, y] disjoint from all finite singular

orbits, such that some orientation-preserving .-word sends x to y. Perform the same

operation as in 3.2, so as to obtain a system / on the circle obtained by identifying

the endpoints of [x, y]. This last system is open, non-nesting, with every orbit dense.

By Sacksteder’s theorem, it admits an invariant measure. This measure lifts first to an

.-invariant measure, then to the required --invariant measure.

This completes the proof when every minimal set of the original system ,I is finite.

If ,I has an infinite minimal set F, we first collapse to a point every component of DcF

(as in 3.3). We obtain a system . on a multi-interval with every regular orbit dense,

and we deal with it as before.
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