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Abstract

For G the fundamental group of a closed surface, we produce an algorithm which decides whether there is
an element of the automorphism group of G which takes one speci"ed "nite set of elements to another. The
algorithm "nds such an automorphism if it exists. The methods are geometric and also apply to surfaces with
boundary. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider the following basic problem about a group and its automorphisms:
Given xnite sets Ma

1
,2,a

n
N and Mb

1
,2,b

n
N of elements of a group G, is there an automorphism of

G taking a
i

to b
i

for all i? If so, xnd one.
In 1936, J.H.C. Whitehead found an elegant algorithm which solves this problem for a "nitely

generated free group [11] (see also [8]). In 1984, Collins and Zieschang extended Whitehead's
methods to free products of "nitely many freely indecomposable groups, assuming that the above
problem, which we will call the Whitehead problem, can be solved in each factor [1,2]. In this
paper, we give an algorithm to solve the Whitehead problem for the fundamental group of a closed
surface R.

The Whitehead problem is easy to solve if s(R)*0, so we assume that R is hyperbolic. The
problem has a nice geometric translation, as follows. A di!eomorphism f of R induces an
isomorphism n

1
(R, p)Pn

1
(R, f (p)), where p is a basepoint for R. If f (p)"p, this gives an automor-

phism of n
1
(R, p); otherwise, we have only an outer automorphism. The maps
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n
0
(Di+ (R, p))PAut(n

1
(R, p)) and n

0
(Di+ (R))POut(n

1
(R)) are isomorphisms for any closed surface

R other than the sphere (see, e.g. [12]). If we represent the elements a
i
and b

i
in n

1
(R,p) by loops

a
i
and b

i
in R based at p, the Whitehead problem then translates into the following problem about

closed curves on a surface:

Is there a diweomorphism of R xxing p which takes each a
i
to a loop homotopic to b

i
? If so, xnd one.

Our solution to this geometric problem relies in part on work of Hass and Scott on straightening
curves on surfaces [7]. It also applies to surfaces with boundary.

We expect that the methods of this paper can be used to solve the Whitehead problem for
torsion-free hyperbolic groups for which we are given the decomposition into freely indecompos-
able factors and the JSJ canonical splittings of these factors.

2. The Out problem

For a free group F, Whitehead began by solving the problem for "nite sets of conjugacy classes of
elements of F. Thus, instead of looking for an automorphism which sends a

i
to b

i
for all i, we just

look for one which sends a
i
to a conjugate of b

i
. This simpli"es the problem considerably, and we

begin for surface groups in the same way. Represent the elements a
i
and b

i
in G"n

1
(R, p) by loops

a
i
and b

i
based at p in R. Using the isomorphism n

0
(Di+ (R))POut (n

1
(R)), the Whitehead problem

becomes

Is there a diweomorphism of R (not necessarily xxing p) which takes each a
i

to a loop freely
homotopic to b

i
? If so, xnd one.

Again, our solution to this geometric problem also applies to surfaces with boundary. However,
this already follows from Whitehead's work on free groups, since the mapping class group of
a bounded surface has "nite index in the subgroup of outer automorphisms of the (free) funda-
mental group of the surface which send conjugacy classes represented by the boundary curves to
other such classes (see, e.g. [12]).

2.1. Curve straightening

We brie#y recall the facts we will need about the `disk #owa of Hass and Scott [7]. A closed
curve a is said to be in general position if it is immersed in R and intersects itself transversely with no
triple points. Starting with a curve in general position, Hass and Scott "nd a `straightera curve
homotopic to a. During the course of the homotopy, only three types of combinatorial changes
take place:

1. A monogon bounding a disk in R!a is eliminated.
2. A bigon bounding a disk in R!a is eliminated.
3. One edge of a triangle in R!a is pushed across the opposite vertex. This move eliminates the

triangle, while creating a new triangle on the opposite side of the vertex (see Fig. 1). The e!ect is
independent of which edge is chosen to push.
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Fig. 1. Triangle move.

Here by a monogon, bigon or triangle we mean one whose closure is imbedded in R. The "rst two
types of changes decrease the number of self-intersection points of the curve. The third type of
change is called a triangle move, and leaves the self-intersecion number unchanged. Moves 1 and
2 are never done `backwardsa, so that the self-intersection number of the curve never increases
during the homotopy.

A closed curve a in general position in R is called a minimal representative if it has the minimal
possible number of self-intersections among curves in general position freely homotopic to a. Hass
and Scott prove the following results, for R a closed orientable surface:

Theorem 2.1 (Hass and Scott [7, Theorem 2.2]). A closed curve a in R is homotopic to a minimal
representative by a homotopy through moves 1, 2 and 3 above.

Theorem 2.2 (Hass and Scott [7, Theorem 2.1]). Let a and b be homotopic minimal representatives.
Then there is a curve a@ obtained from a by triangle moves and an isotopy of R sending a@ to b.

The above de"nitions readily extend to "nite n-tuples of closed curves (a
1
,2,a

n
). Hass and Scott

remark that Theorems 2.1 and 2.2 apply to "nite n-tuples of curves, provided the curves in each
n-tuple are distinct and none of them is a proper power [7, top of p. 34]. The proofs given in [7] of
Theorems 2.1 and 2.2 work for such an n-tuple of curves even if R is not orientable.

2.2. Proper powers

In order to use the results of Hass and Scott to solve the Whitehead problem, we must show that
we can assume that none of the a

i
or b

i
are proper powers.

The following lemma is well known. We sketch a proof for completeness.

Lemma 2.3. Let G be a torsion free hyperbolic group. Given g3G nontrivial, there exists a unique
x3G, computable ewectively, such that x is not a proper power and g"xt for some t*1.

Proof. Existence and uniqueness follow from the fact that the centralizer of g is virtually cyclic,
hence cyclic since G is torsion free. To "nd x and t explicitly, choose a "nite generating system and
recall the following facts about hyperbolic groups.

Denote by DhD the length of an element h3G, by EhEthe minimal length of a conjugate of h, and by
EhE

s
the limit (which is also the in"mum) of DhmD/m (this is the stable norm of h). Suppose G is
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d-hyperbolic for the chosen generating system. The constant d may be computed explicitly from
a presentation, and EhE

s
*EhE!16d for every h3G [3, chapter 10, Proposition 6.4]. Furthermore,

EhE
s
is bounded below by some explicitly computable e'0 for h of in"nite order ([6, 8.5.T], see

also [4, Proposition 3.1]).
If g"xt, then DgD/t*ExE

s
'e, hence t)DgD/e. We also have DgD/t*ExE

s
*ExE!16d, hence

a bound for ExE. Now we only need to check whether hm is conjugate to g, for a "nite number of
elements h and exponents m. h

Corollary 2.4. In the Whitehead problems, we may assume that no a
i
or b

i
is a proper power.

Proof. Write a
i
"xti

i
and b

i
"yui

i
as in Lemma 2.3. If t

i
Ou

i
for some i, the problem has no solution.

Otherwise, an automorphism u takes a
i
to (a conjugate of) b

i
if and only if it takes x

i
to (a conjugate

of ) y
i
. h

2.3. n-tuples of curves

Fix integers n'0 and m*0. We consider n-tuples c"(c
1
,2c

n
) of oriented closed curves in R in

general position, intersecting in m points. We let ¹
m,n

be the set whose elements are such n-tuples of
curves, up to di!eomorphism of R.

Lemma 2.5. The set ¹
m,n

is xnite and may be constructed explicitly.

Proof. Given a set c, we "rst consider C"c
1
X2Xc

n
as an abstract topological space. There are

"nitely many possibilities, since the number of components and the number of vertices (all 4-valent)
are bounded.

Next we consider a regular neighborhood P of C in R, up to a di!eomorphism preserving the
orientation and the ordering of the curves c

1
,2,c

n
. It may be constructed by gluing "nitely many

pieces: one disc for each vertex of C, one strip e] [0, 1] for each edge e, and either an annulus or
a MoK bius band for each circle component of C. We may list explicity all the possibilities (of course
some of the surfaces we obtain do not embed into R, e.g. if P is not orientable whereas R is).

To each P thus constructed, we attach bounded surfaces so as to obtain a closed surface. This is
described by the topological type of each component of R!P (orientability and Euler character-
istic), and the way each boundary component is attached to the boundary of P. Only "nitely many
possibilities (if any) may lead to a surface di!eomorphic to R, since the Euler characteristic of each
component of R!P is bounded by !s(R). h

We make ¹
m,n

into a "nite, possibly disconnected, graph by placing an edge between two vertices
if they correspond to n-tuples of curves di!ering by a triangle move.

2.4. Solution of the Whitehead problem for conjugacy classes

Proposition 2.6. Let G"n
1
(R, p), and let a

1
,2, a

n
and b

1
,2, b

n
be elements of G. There is an

algorithm which decides whether there is an automorphism u of G taking a
i
to a conjugate of b

i
for all

i"1,2, n, and xnds such a u if it exists.
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Proof. We may assume that no a
i
or b

i
is a proper power by Corollary 2.4, that no a

i
is conjugate to

aB1
j

for iOj, and similarly for the b
i
's (recall that the conjugacy problem is solvable in G).

Represent the a
i
and b

i
by n-tuples of closed curves a"(a

1
,2,a

n
) and b"(b

1
,2,b

n
) in R. The

assumptions just made allow us to apply Hass}Scott, and after straightening we may assume a and
b are minimal representatives.

Count the number of self-intersections of each set of curves. If these numbers are di!erent, there
is no automorphism and we are done. Otherwise, let m be the self-intersection number. We claim
that the automorphism u exists if and only if the vertices of ¹

m,n
determined by a and b are

connected in ¹
m,n

.
If the two vertices are connected in ¹

m,n
, then we can construct a di!eomorphism taking a to a set

of curves obtained from b by triangle moves (and therefore homotopic to b). Conversely, suppose
f is a di!eomorphism of R with f(a

i
) homotopic to b

i
for all i. Then Theorem 2.2 says that the

corresponding vertices of ¹
m,n

are connected. h

Corollary 2.7. (The Whitehead problem for single elements). Let G"n
1
(R, p), and let a, b3G. There

is an algorithm which decides whether there is an automorphism of G taking a to b, and xnds such an
automorphism if it exists.

Proof. By Proposition 2.6, we can decide whether there is an automorphism u taking a to
a conjugate of b, and "nd u if it exists. We can then solve for x in the equation u(a)"xbx~1. The
composition of u with conjugation by x sends a to b. h

3. The Aut problem

We now return to the Whitehead problem for words, as opposed to conjugacy classes of words.
Using Corollary 2.7 we reduce to the following special case:

Given elements c, a
1
,2,a

n
, b

1
,2b

n
in G"n

1
(R, p), is there an automorphism of G which xxes c and

sends a
i

to b
i

for all i"1,2,n? If so, xnd one.

We may assume that c is not a proper power, by Lemma 2.3. We represent the elements c, a
i
and

b
i
by loops h, a

i
and b

i
based at p in R.

We may also assume that h has minimal self-intersection number among all loops freely
homotopic to h, i.e. h is a minimal representative. To see this, notice that each of the Hass}Scott
moves which must be done to "nd a minimal representative for h may be performed without
moving the point p, as long as p is not a double point of h. Alternatively, "nd a minimal
representative of h using the Hass}Scott algorithm; the result is conjugate to h in n

1
(R), by

a (computable) element d. Now choose a di!eomorphism of R isotopic to the identity which "xes
p and induces conjugation by d on n

1
(R, p). The image of the minimal representative is then

homotopic to the original h, and is still a minimal representative.
Let N be a subsurface of R consisting of a regular neighborhood of h together with all disk

components of the complement of this neighborhood. Then N is an invariant of the homotopy class
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c of h in the following sense: if h@Kh is another minimal representative of c, then there is an isotopy
of R sending N di!eomorphically onto the subsurface N@ corresponding to h@. This follows since, by
Theorem 2.2, h@ can be obtained from h by triangle moves, which do not change the isotopy class of N.

3.1. Reduction to a subgroup of the stabilizer of c

Let Stab(c) denote the stabilizer of c in Aut (n
1
(R, p))+n

0
(Di+ (R, p)). Then Stab(c) contains the

subgroup n
0
(Di+ (R, N)) of (isotopy classes of) di!eomorphisms of R which "x N pointwise; it also

contains the inner automorphism i
c
(x)"cxc~1, which can be represented by a di!eomorphism of

R "xing p and R!N. Note that i
c
commutes with each element g of n

0
(Di+ (R, N)), since i

c
and

g can be represented by di!eomorphisms with disjoint support. We de"ne A
c
to be the subgroup of

Stab(c) generated by n
0
(Di+ (R, N)) and i

c
.

Lemma 3.1. A
c

has xnite index in Stab(c).

Proof. The result is easy if N is an annulus or a MoK bius band, so we assume v(N)(0.
If f is a di!eomorphism of R with f (h)Kh, then up to isotopy, f restricts to a di!eomorphism f

N
of

N. Thus we have a map o from Stab (c) to n
0
(Di+ (N)), which we view as a subgroup of Out (n

1
(N, p)).

We claim that the image of Stab (c) under this map is "nite. For any "xed positive integer m, the
set S

m
of (homotopy classes of) simple closed curves in N with intersection number at most m with

h is "nite, since each component of N!h is either a disk or an annulus. For f3Stab(c), the
associated di!eomorphism f

N
of N preserves the intersection number with h, so acts on S

m
. We can

write down a "nite set D of simple closed curves in N with the property that an element of
n
0
(Di+ (N)) is determined completely by the images of the curves in D. Now choose m larger than

the geometric intersection number of h with any curve in D, so that the action of f
N

on
S
m

completely determines the class of f
N

in n
0
(Di+ (N)). Since there are only a "nite number of

permutations of the "nite set S
m
, the image of Stab(c) in n

0
(Di+ (N)) is "nite.

The kernel of the map o : Stab(c)POut(n
1
(N, p)) is generated by n

0
(Di+ (R, N)) together with

di!eomorphisms which induce inner automorphisms on n
1
(N, p). But the only inner automor-

phisms of n
1
(N, p) which "x c are conjugation by powers of c. (If aca~1"c, then a commutes with

c. Since c is not a proper power, a is a power of c.) Therefore A
c
is equal to the kernel of o, so has

"nite index in Stab(c). h

One can determine explicitly the image of o, and thus write down explicit representatives
u
1
,2, u

s
for cosets of A

c
in Stab(c), as follows. Using the solution to the Out problem, we can list

those permutations of S
m

that are induced by some di!eomorphism of N (which is then unique up
to isotopy). For each such di!eomorphism, we check whether it "xes h and extends to a di!eomor-
phism of the whole of R.

If t3Stab(c) sends a
i

to b
i

for all i, then there exist j3M1,2, sN and u3A
c

such that
u(a

i
)"u~1

j
(b

i
) for all i. Our question in Stab(c) is therefore equivalent to a "nite set of questions of

the form:

Is there an element u of A
c

with u(a
i
)"b

i
for all i"1,2, n? If so, xnd one.

We now proceed to solve this question.
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Fig. 2. Decomposition of a.

3.2. Geometric translation

On each component C
k
of the boundary of N, "x an orientation and choose a basepoint q

k
. We

denote by c
k

the oriented simple loop based at q
k

with image C
k
.

Let a be any loop based at p in R, and homotope a so that it is immersed and intersects LN
transversely with minimal possible intersection number. The intersection points of a with LN divide
a into arcs: a"g

0
p
1
g
1
p
22

p
r
g
r
with g

j
LN and p

j
LR!N. Associated to this decomposition are

indexing functions o, e, where p
j
begins in the component C

o(j)
of LN and ends in C

e(j)
. We may

assume each p
j
begins at q

o(j)
and ends at q

e(j)
(see Fig. 2).

We say that g
0
p
1
g
12

p
r
g
r
is a normal form for a with indexing functions o and e. Note that p

j
is

not homotopic to a power of c
o(j)

if o( j)"e ( j) since otherwise we could push p
j
across C

o(j)
and

decrease the number of intersections of a with LN. Similarly g
j

is not a power of c
e(j)

if
o( j#1)"e ( j).

Lemma 3.2. Let a and b be two loops at p, with normal forms g
0
p
1
g
12

p
r
g
r

and k
0
q
1
k
12

q
s
k
s

and
indexing functions o,e and o@, e@, respectively. Then a is homotopic to b if and only if r"s, o"o@, e"e@
and there are integers x

j
and y

j
for 1)j)r with

g
0
Kk

0
c~x1
o(1)

,

p
j
Kcxj

o(j)
q
j
c~yj
e(j)

for 1)j)r,

g
j
Kcyj

e(j)
k
j
c~xj`1

o(j`1)
for 1)j)r!1,

g
r
Kcyr

e(r)
k
r
.

Proof. In each component R
l
of R!N, "x a basepoint p

l
and a path from q

k
to p

l
for each

component C
k
of the boundary of R

l
. Then n

1
(R, p) is the fundamental group of a graph of groups,

with vertex stabilizers n
1
(N, p) and n

1
(R

l
, p

l
), and cyclic edge stabilizers generated by the c

k
. The

expressions g
0
p
1
g
12

p
r
g
r
and k

0
q
1
k
12

q
s
k
s
are reduced for the graph-of-groups representation of

n
1
(R, p), and so are uniquely determined up to the equivalence relation in the statement of the

Lemma (see [10, Exercise I.5.2]). h
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An element of A
c
sends a normal form decomposition

g
0
p
1
g
12

p
r
g
r

to

(hwg
0
)g(p

1
)g

12
g(p

r
)(g

r
h~w)

for some w3Z and di!eomorphism g of R "xing N. This expression is still in normal form, so by
Lemma 3.2, we may rephrase the Whitehead problem as:

Question 3.3. For 1)i)n, let g
i0
p
i1
g
i12

p
iri
g
iri

and k
i0
q
i1
k
i12

q
iri
k
iri

be normal forms for a
i
and b

i
,

respectively, with indexing functions o
i
and e

i
(the same for a

i
and for b

i
). Do there exist integers w, x

ij
and y

ij
and a diweomorphism g of R xxing N with

hwg
i0
Kk

i0
c~xi1
oi(1)

,

g(p
ij
)Kcxij

oi(j)
q
ij
c~yij
ei(j)

for 1)j)r
i
,

(*)
g
ij
Kcyij

ei(j)
k
ij
c~xi,j`1

oi(j`1)
for 1)j)r

i
!1,

g
iri
h~wKcyiri

ei(ri)
k
iri
.

Note that an equation of the form j
H
KcxH

o(H)
q
H
c~yH
e(H)

means that j
H

and q
H

are homotopic as paths
in R!N, with endpoints required to remain on the boundary during the homotopy.

3.3. Finding diweomorphisms of the complementary components

We begin by trying to "nd the di!eomorphism g of R "xing N. This is equivalent to "nding
a di!eomorphism of each component M of R!N which "xes the boundary of M pointwise. In this
subsection we "x such a component M; i.e. M is a connected, bounded surface which is not a disk.

Lemma 3.4. Let Mp
1
, 2, p

r
N and Mq

1
, 2, q

r
N be two xnite sets of oriented arcs in M such that for each

j both p
j

and q
j

connect q
o(j)

to q
e(j)

. We can decide whether there exists a diweomorphism h : MPM
equal to the identity on the boundary with h(p

j
)Kcxj

o(j)
q
j
c~yj
e(j)

for some integers x
j
and y

j
, and xnd one if it

exists.

Proof. Let M
1

and M
2

be two copies of M and form the double MM by gluing M
1

to M
2

by the
identity on the boundary. Let p

j
p6
j
denote the oriented closed curve in MM obtained by gluing the

copy of p
j

in M
1

to the copy of p6
j

in M
2
, where p6

j
denotes p

j
with the opposite orientation;

similarly, let p
j
q6
j
denote the result of gluing the copy of p

j
in M

1
to the copy of q6

j
in M

2
. By the

outer version of the Whitehead algorithm, we can decide whether there is a di!eomorphism f of
MM taking p

j
p6
j
to p

j
q6
j
for all j and the oriented boundary curves c

k
to c

k
for all k. If f exists, it must

restrict to a di!eomorphism of M
2
sending p

j
to cxj

o(j)
q
j
c~yj
e(j)

for some integers x
j
and y

j
as desired (we

may have to compose f with the canonical involution of MM if f sends M
2

to M
1
). h

The di!eomorphism h in Lemma 3.4, if it exists, is not unique. In particular, we may compose it
with Dehn twists around the components of LM. This has the e!ect of increasing each x

j
and y

j
by
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Fig. 3. Minimal representative for ac2.

an integer depending only on the component of LM containing the corresponding endpoint of p
j
.

Our next goal will be to show that, as far as the numbers x
j
and y

j
are concerned, this is the only

freedom we have.
First we show the following:

Lemma 3.5. Let M be a surface with boundary, with s(M)(0. Let C be an oriented component of the
boundary, q3C a basepoint and c the corresponding boundary loop. Let f be a diweomorphism of
M which xxes C pointwise.

(i) If a is a loop at q with f (a)Kcuac~v, then u"v.
(ii) If a, b are loops not homotopic to powers of c, with f (a)Kcuac~u and f (b)Kctbc~t, then u"t.

Proof. (i) After possibly composing f with a power of the Dehn twist D about C we may assume
u"0.

If a is simple, then f (a)Kac~v is also simple, as is f~1(a)Kacv. But, one of acv or ac~v has
minimal self-intersection number exactly v, since the obvious transverse representative has no
embedded monogons, bigons or triangles with which to do Hass-Scott moves (see Fig. 3). This
proves v"0 when a is simple.

We claim that the general case follows from the simple case by passing to a "nite cover. By
a theorem of Scott [9], there is a "nite cover p : M

1
PM and an incompressible subsurface

X-M
1

with p
H
n
1
(X) equal to the subgroup F of n

1
(M) generated by a and c. We may assume that

a is not a power of c, so that F is free of rank two. Let a8 , c8 be lifts of a, c, respectively, so that
n
1
(X)"Sa8 , c8 T. Since c lifts to a boundary curve c8 LLX which is primitive in n

1
(X), X is a pair of

pants or a punctured MoK bius band. Thus there is a simple curve a8 @ in X with n
1
(X)"Sa8 @, c8 T. By

a standard result about the free group of rank 2, there exist integers s, s@ such that a@"c8 sa8 B1c8 s{.
Replacing a by csaB1cs{ in the original problem, we may assume both a and c lift to simple curves in
M

1
. The index of p

H
n
1
(M

1
) in n

1
(M) is "nite. Since there are only "nitely many subgroups of a given

"nite index in n
1
(M), we must have f l

H
(p
H
n
1
(M

1
))"p

H
n
1
(M

1
) for some l'0, so that f l lifts to

a di!eomorphism of M
1
. Replacing f by f l in the original problem, we are reduced to the simple

case.
(ii) By composing with a power of the Dehn twist D along C, we may assume u"0.
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We "rst consider the case that a and b are both simple. Double M along its boundary and let
A and B be simple curves in the doubled surface, obtained by doubling a, b and making them
simple. Extend f to the doubled surface by the identity. Then f acts on B as Dt and on A as the
identity (up to homotopy). If tO0, the geometric intersection number between f m(A) and f m(B)
goes to in"nity as m goes to in"nity by [5, Proposition 1 p. 68], a contradiction (note that the result
of [5] applies even if M is not orientable, because C does not bound a MoK bius band on the doubled
surface).

Again, we reduce to the simple case by passing to a "nite cover. Exactly as in part (i) we may lift
to a cover in which a and c are simple. In this cover, b may not lift to a closed loop; however some
power of b is closed and we may replace b by this power without loss of generality.

We now apply the same trick to c and b: we pass to a "nite cover in which c and csbB1cs{ are both
simple, for some s and s@. Replacing b by cs{bB1cs{ in the original problem, and a by some power of
a, we are reduced to the situation that c, a and b are all simple. h

Corollary 3.6. Let h : MPM be a diweomorphism equal to the identity on the boundary, with
h(p

j
)Kcxj

o(j)
q
j
c~yj
e(j)

for some integers x
j

and y
j
(as in Lemma 3.4). Let h@ be another diweomorphism with

the same properties (for possibly diwerent integers x@
j
, y@

j
). Then there exists an integer z

k
for each

boundary component C
k

such that h@(p
j
)Kczo(j)

o(j)
h(p

j
)c~ze(j)

e(j)
for all j.

Proof. Consider the composition f"h~1h@; this sends each p
j
to cuj

o(j)
p
j
c~vj
e(j)

for some integers u
j
and

v
j
. By Lemma 3.5, u

j
"v

j
whenever o( j)"e( j). We also need to show that if p

j
and p

l
both begin on

C"C
o(j)

"C
o(l)

, then u
j
"u

l
. There are four cases to consider, depending on where the other

endpoints are.
The result follows from Lemma 3.5 if p

j
and p

l
have both endpoints on C. If p

j
and p

l
have

endpoints on the same component C@OC, collapse C@ to a point and apply the "rst part of Lemma
3.5 to p

j
p~1
l

(we may assume M is not an annulus, so we don't get a disc after collapsing). If p
j
and

p
l

have endpoints on distinct components C@, CA both di!erent from C, perform Dehn twists
around C@ and CA to get rid of v

j
and v

l
, glue C@ to CA, and apply the "rst part of Lemma 3.5 to

p
j
p~1
l

. If C@"COCA, glue a punctured torus on CA, extend f by the identity, and apply the second
part of Lemma 3.5 to a loop of the form p

l
qp~1

l
, where q is a loop in the punctured torus which is

not parallel to the boundary. K

In the situation of Lemma 3.4 we may now decide whether there exists h sending p
j
to cxj

o(j)
q
j
c~yj
e(j)

,
where some of the x

j
, y

j
are prescribed in advance.

3.4. A Whitehead algorithm for surface groups

We are now in a position to prove our main result.

Theorem 3.7. Let G"n
1
(R, p), and let Ma

1
,2,a

n
N and Mb

1
,2,b

n
N be elements of G. There is an

algorithm which decides whether there is an automorphism u of G taking a
i

to b
i

for each i, and xnds
such a u if it exists.
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Proof. After solving the problem for conjugacy classes, we are reduced to the same problem in the
stabilizer of an element c3G. In the notation de"ned above, we have further reduced this problem
to that of "nding a di!eomorphism g of & "xing the subsurface N and integers x

ij
, y

ij
and w which

satisfy equations (*) of Question 3.3.
We "rst consider the case that c is represented by a simple two-sided curve, so that N is an

annulus with two boundary components C
1

and C
2
. We orient C

1
and C

2
in the same direction,

and we denote by c the corresponding homotopy class of loops (dropping all subscripts e
i
(j), o

i
(j) for

simplicity). Conjugation by c can be realized by a di!eomorphism of R equal to the identity on
N (opposite Dehn twists supported in neighborhoods of C

1
and C

2
), so we may in fact assume that

w"0.
Choose an embedded arc l through p from C

1
and C

2
. By pushing curves into R!N, we may

assume that all of the g
ij

and k
ij

in equations (*) are contained in l. The equations

g
i0
Kk

i0
c~xi1,

g
ij
Kcyijk

ij
c~xi,j`1,

g
iri
Kcyirik

iri
,

then imply that

x
i1
"0,

y
ij
"x

i,j`1
,

y
iri
"0

for 1)i)n, 1)j)r
i
!1.

By Lemma 3.4, we can decide whether there exists a di!eomorphism h of R!N "xing the
boundary with h(p

ij
)Kcuijq

ij
c~vij for some integers u

ij
and v

ij
. If h does not exist, then g does not

exist. If h exists, then by Corollary 3.6 any di!eomorphism g which satis"es our requirements has
the same e!ect on the p

ij
as the product of h with Dehn twists z

1
times around C

1
and z

2
times

around C
2
, with x

ij
"u

ij
#z

oi(j)
and y

ij
"v

ij
#z

ei(j)
for all i and j. Thus g exists if and only if the

following system of integral linear equations is solvable:

u
i1
#z

oi(1)
"0,

v
ij
#z

ei(j)
"u

i,j`1
#z

oi(j`1)
,

v
iri
#z

ei(ri)
"0

for 1)i)n, 1)j)r
i
!1. This completes the proof when N is an annulus.

The proof when N is a MoK bius band is fairly similar. We denote by cKc2 the loop correspond-
ing to LN. Since the Dehn twist around c represents conjugation by c2, we can assume w"0 or 1.
The precise value is determined by the equation hwg

10
Kk

10
c~x11
o1(1)

, considered modulo 2 in
n
1
NKZ. By properties of normal forms, all loops g

ij
, u

ij
for 0(j(r

i
represent odd powers of c,

and by pushing into R!N we may assume g
ij
"k

ij
. For j"0, we consider hwg

i0
and k

i0
. If they

are not equal modulo 2 in n
1
N, then g does not exist. If they are, then we may assume that they are
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actually equal (not only modulo 2). A similar argument applies for j"r
i
. The rest of the proof is

then the same as when N is an annulus.
If N is not an annulus or a MoK bius band, we cannot ignore conjugation by c. The equation in (*)

involving g
ij

and k
ij

can be interpreted as equations in the free group n
1
(N, p) by "xing paths from

p to each q
k
. We will need the following lemma about solving equations in free groups:

Lemma 3.8. Let A, B, c and d be elements of a xnitely generated free group F, with c and d nontrivial.
(i) If c and d are not contained in conjugate cyclic subgroups, the equation B"ctAdu has at most one

solution (t, u)3Z2. We can decide ewectively whether there is a solution, and if so xnd it.
(ii) If A does not belong to the maximal cyclic subgroup containing c, the same conclusions hold for

the equation B"ctAcu.

Proof. (i) To show uniqueness, note that if ctAdu"ct{Adu{, then (AdA~1)u~u{"ct~t{. Since F is free,
this implies that either AdA~1 and c are in the same cyclic subgroup or u!u@"t!t@"0.

If t and u satisfy B"ctAdu with DtD (hence also DuD) large, then some central segment of the word
ctA"Bd~u is a conjugate of both a power of c and power of d, contradicting our hypothesis.
Consequently, we need only check whether the equation is true for "nitely many values of t and u.

(ii) For the uniqueness statement, note that since A and c are not in the same maximal cyclic
subgroup, they generate a free subgroup of F of rank 2, so are in fact a basis for this free subgroup.
If ctAcu"ct{Acu{ then t"t@ and u"u@ by the normal form theorem for free groups.

Without loss of generality, we may assume that c is cyclically reduced, and that c is not a proper
power. If DtD (and therefore DuD) is large, the words Bc~u and ctA have reduced form
bc~s (DbD)DBD#DcD) and cra (DaD)DAD#DcD) respectively, with DsD and DrD large; if B"ctAcu, then
either ca or c~1a is a terminal segment of c~s. Since c is cyclically reduced and not a proper power,
no cyclic permutation of c is equal to c or c~1. Therefore a must be a power of c, i.e. A is a power of
c, contradicting our hypothesis. h

Since N is not an annulus or a MoK bius band, the maximal cyclic subgroups containing c and [c
k
]

are not conjugate in n
1
(N). Therefore the equations

cw[g
i0
]"[k

i0
][c

oi(1)
]~xi1,

[g
iri
]c~u"[c

ei(ri)
]yiri[k

iri
]

for 1)i)n, uniquely determine x
i1
, y

iri
and w, by part 1 of Lemma 3.8. Since N is not an annulus,

the maximal cyclic subgroups containing [c
k
] and [c

k{
] are not conjugate for kOk@. Furthermore,

neither [g
ij
] nor [k

ij
] is a power of [c

ei(j)
] if e

i
( j)"o

i
( j#1), since the intersection number of the

a
i
and b

i
with LN is minimal. Therefore the equations

[g
ij
]"[c

ei(j)
]yij[k

ij
][c

oi(j`1)
]~xi,j`1

for 1)i)n, 1)j)r
i
!1 uniquely determine the remaining values of y

ij
and x

ij
(if

e
i
(j)Oo

i
(j#1), use part 1 of Lemma 3.8; otherwise part 2 applies).
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Now apply Lemma 3.4 to determine whether there is a di!eomorphism h of R "xing N and
sending each p

ij
to cuij

oi(j)
q
ij
c~vij
ei(j)

for some integers u
ij

and v
ij
. If such a di!eomorphism exists, we now

check whether any choices of the twist factors z
k

satisfy the equations x
ij
"u

ij
#z

oi(j)
and

y
ij
"v

ij
#z

ei(j)
for all i and j. If so, composing h with the speci"ed Dehn twists gives the required

di!eomorphism g; the composition of the automorphism induced by g and conjugation by
cw solves the Whitehead problem in Aut(n

1
(N, p)). If not, there is no solution. K
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