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GEOMETRIC GROUP ACTIONS ON TREES 

By Gilbert Levitt and Fr?d?ric Paulin 

Abstract. We define geometric group actions on R-trees, as dual to a measured foliation on a 2 

complex with some finiteness and injectivity properties. We prove that an action is nongeometric 
if and only if it is a nontrivial strong limit in the sense of Gillet-Shalen. We give a simple new 

construction of the Bass-Serre tree of a graph of groups, and we show that a simplicial action is 

geometric if and only if edge groups are finitely generated. We prove that geometric actions with 

trivial edge stabilizers have finitely many orbits of branch points, and finite rank. 

Introduction. An R-tree is an arcwise connected metric space in which 

every arc is isometric to an interval of R. See for instance [Shal, Sha2, Mor] for 

historical remarks, references and motivation. 

It is well-known that codimension one measured foliations (or laminations) 
on compact manifolds have strong connections with group actions on R-trees 

(see [MSI, MO]). This was used for instance by Morgan-Shalen [MS2] to show 

that (most) surface groups act freely on R-trees. Conversely, a theorem by Skora 

[Sko] (see also [Ota]) asserts that every (minimal) action of a surface group ^{L 
on an R-tree with cyclic arc stabilizers is geometric: it comes from a measured 

foliation on Z. 

On the other hand, many interesting actions cannot be obtained from folia 

tions. For instance, iteration of (irreducible) automorphisms of finitely generated 
free groups leads to actions that may fail to be geometric (see [BF2, GL]). 

This concept of a geometric action on an R-tree has been used by many 
authors [GSS, BF1, BF2, Mor, GL, Lev3], with various meanings. One of its 

main uses is to replace (or approximate) a given action on an R-tree by one 

which is simpler to analyze while keeping a control over edge stabilizers (see for 

instance [GL]). 
In this paper we offer what we think is the right definition. It is given in 

terms of measured foliations, and our main result (Theorem 0.2) states that there 

is a very simple equivalent definition: nongeometric actions are precisely those 

actions that can be viewed nontrivially as strong limits (in the sense of Gillet 

Shalen [GS]). We then illustrate the general theory on several types of examples: 

simplicial actions, actions with trivial edge stabilizers, abelian actions... 

Manuscript received July 31, 1995. 
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_iill I Ilk ,^"\ 
Figure 1. Foliated 2-simplices. 

The general idea is that an action of a group G on an R-tree T is geometric 
if and only if it comes from a measured foliation on a finite complex. One can 

then try the following definition. 

Start with a measured foliation T (with suitable regularity conditions) on 

a finite complex Z with n\L = G. Lift T to a measured foliation T on the 

universal covering Z. We associate to T a metric space T(T), the "leaf space 
made Hausdorff" [Levi], as follows. We consider the pseudodistance d(x,y) on Z 

defined as the infimum over all paths 7 from jc to y of the total mass I7I 
~ 

placed 

on 7 by the transverse measure of T. We define T(T) as the associated metric 

space (obtained by identifying x, y if d(x, y) 
= 

0). The space T(T) is an R-tree 

[GS] with a natural action of G. We may then say that an action is geometric if 

it is obtained in this way. 
There are two problems with this definition. First, it may happen that T(T) 

is very different from the leaf space of T. For an extreme example, take T to be 

a foliation with dense leaves on Z = S2 (there exist such foliations, with 4 thorns 

as singular set: see for instance [FLP], page 217). 
This leads to imposing an extra condition that guarantees in particular that 

leaves of T are closed: every compact arc transverse to T may be subdivided 

into finitely many subintervals that are mapped isometrically into T(T) (compare 

[BF1, BF2])^ 
After subdividing Z (see Lemma 1.3) one may then assume that ev 

ery edge of Z is either tangent to T, or transverse to T and mapped isometrically 
into T(f). 

Second, the above definition only applies to finitely presented groups, since 

G has to be the fundamental group of a finite complex. On the other hand, one 

is interested in studying actions of finitely generated groups. We get around this 

difficulty by considering normal coverings 9: Z ?> Z with transformation group 

G, where Z may fail to be simply connected (compare [BNS]). 

Our definition then goes as follows. Consider a triple (L,p,T), where: 

Z is a connected finite simplicial 2-complex, and p is an epimorphism 

7TiZ 
?> G. 

T is a measured foliation on Z, i.e., a foliation equipped with a nonatomic 

transverse measure with full support. Each edge of Z is either contained in a leaf 

or transverse to T. The foliation induced on any 2-simplex of Z is topologically 

conjugate to one of the two models pictured on Figure 1, with leaves either 

parallel or perpendicular to one side. 
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Definition 0.1. An action of G on an R-tree T is geometric if there exists 

(Z, p9 T) as above such that: 

T is G-equivariantly isometric to T(Jr)9 where T is the pullback of T to 

the covering Z of Z associated to p and T(T) is the "leaf space made Hausdorff' 

defined above. 

every edge of Z that is transverse to T is mapped isometrically into T(T) 

by the canonical map tt: Z ? 
T(F). 

Recall that an action is minimal if there is no proper invariant subtree. As 

suming for simplicity that G is finitely presented (see Section 2 for the general 

case), we then have: 

Theorem 0.2. Let T be an R-tree with a minimal action ofG. 
1. If the action is not geometric, then it is a strong limit of geometric actions of 

G on R-trees Tn. 
2. If the action is geometric, then it may only be a strong limit in a trivial (i.e. 

stationary) way. 

Corollary 0.3. An action is nongeometric if and only if it is a nontrivial strong 
limit. 

Roughly speaking, saying that the trees Tn converge strongly towards T (in 
the sense of [GS]) means that they approximate T in such a way that any finite 

subtree of T may be lifted isometrically (and equivariantly with respect to a finite 

set in G) to Tn for n large enough. See Section 1.1 for the precise definition. In 

particular we have (see Theorem 3.7 for the general case of finitely generated 

groups): 

Corollary 0.4. If a finitely presented group G acts on an R-tree T, then G has 

a geometric action on an R-tree V such that edge stabilizers for T' are subgroups 

of edge stabilizers for T. 

If G is finitely generated, then either there is a point jc G T fixed by all 

elements of G, or there is a smallest nonempty invariant subtree TmXn c T ([AB, 

CM]). In Section 4 we prove: 

Theorem 0.5. Let T be an R-tree with a geometric action of a finitely generated 

group G. If there is no global fixed point, then rmin is closed in T and the restriction 

ofthe action to Tm[n is geometric. 

This was proved in [GL] when G is free. By analogy with [GL], we may ask 

the following question (in the situation of Theorem 0.5): if A is a free factor of 
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G, acting with no global fixed point, is the minimal subtree of A closed, and is 

the restriction of the action of A to this subtree still geometric? 

Specializing to simplicial actions, we give a new construction of the Bass 

Serre tree associated to a graph of groups (Section 5) and we prove: 

Theorem 0.6. A minimal simplicial action of a finitely generated group is 

geometric if and only if all edge groups are finitely generated. 

Geometric actions with abelian length function have been studied in [Lev3] 

(it is easily checked that the above definition of a geometric action may be used 

in the proof of Theorem 3.1 of [Lev3]). Using work by Bieri-Neumann-Strebel 

[BNS], one has for instance: 

Theorem 0.7. [Lev3] Let G be finitely generated. The following conditions are 

equivalent: 

Every action ofGonR by translations is geometric. 
The commutator subgroup [G, G] is finitely generated. 

Since they are associated to finite complexes, geometric actions may be ex 

pected to have strong finiteness properties: the number of orbits of branch points 
should be finite (bounded by the number of vertices of Z), and the action should 

have finite Z-rank (its length function should take its values in a finitely generated 

subgroup of R). 
These finiteness properties hold if T has the property that the pseudodistance 

d(x,y) between any two points x,y G Z is realized: d(x,y) 
= 

Yi\y 
for some path 

7 from x to y. Unfortunately, we can prove this only when the action has trivial 

edge stabilizers (using arguments from [GLP2]). We get (see Section 3): 

Theorem 0.8. Let T be an R-tree with a geometric action of a finitely presented 

group G. If the action has trivial edge stabilizers, there are finitely many orbits of 

branch points and the action has finite Z-rank. 

This was proved in [GL] when G is free. Inspired by [GL], Corollary III.3, 

we ask: 

Question. Suppose G is generated by k elements. Consider a geometric action 

of G with trivial edge stabilizers. Is the number of orbits of branch points bounded 

by 2k ? 2? (This is proved in [GL] for G a free group.) 

By the same arguments as in [GL], a positive answer would imply that any 

minimal action with trivial edge stabilizers of a finitely presented group has at 

most 2k ?2 orbits of branch points, and has Q-rank < 3k - 3. 

Though we cannot prove Theorem 0.8 for a general geometric action, we 

show (Theorem 3.1) that geometric actions are /-actions in the sense of [Lev2]: 
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there are only finitely many distinct closures of orbits of branch points. See 

[Lev2], Theorems 1 and 2, for properties of /-actions: topological finiteness of 

the quotient space, and absence of exceptional minimal set. 

1. Preliminaries. We define an action of a group on a metric space to be 

a left isometric action. First we say a few words about quotient spaces. Let N be 

a countable group acting on an R-tree T. The space of orbits T/N has a natural 

pseudometric, induced by the metric of T. Identifying points at pseudo-distance 

0 in T/N gives a metric space T/N. 

An N-equivariant Lipschitz map T ?> T1 induces a continuous map T/N 
?> 

V/N. If TV is a normal subgroup of a group H acting on T9 there is a natural 

action of H/N on f/N. 
We shall use the following fact: 

Theorem 1.1. [Levi] Let N be a countable group acting on an R-tree T.IfN 
is generated by its elliptic elements (i.e., elements acting with a fixed point), then 

T/N is an R-tree. 

1.1. Morphisms, strong limits. We define morphisms as in [MO]. A mor 

phism from a segment / to an R-tree T is a continuous map/: / ? T such that / 

may be subdivided into finitely many subsegments that/ injects isometrically into 

T. Let T, Tf be R-trees endowed with actions of groups G, G' respectively. Let 

(p: G ?> G' be a homomorphism. A morphism from T to V is a map/: T ? 
V9 

equivariant relative to tp (in the sense that/(gjc) =.<p(g)f(x))9 which induces a 

morphism on every segment I C T. Note that a morphism obviously does not 

increase distances. 

Here is a very useful way to prove that an equivariant map /: T ?* Tf is 

a morphism. Suppose K c T is a subtree such that every segment / C T is 

contained in a finite union of images of K under G. If / | K is an isometric 

embedding, then / is a morphism. 
Let {Gn}wGN be a sequence of finitely generated groups with epimorphisms 

Gn ?> Gn+X and G be its direct limit 

G = limG?. 

Note that one has epimorphisms rn: Gn 
? 

G, and that if G is finitely presented, 
then the sequence is stationary. 

We say that a sequence of R-trees Tn with actions of Gn converges strongly 

(see [GS]) to an R-tree T with an action of G = lim Gn if there exist surjective 

morphisms fnp from Tn to Tp (for n < /?), and/? from Tn to T9 such thatfpofnp =/?, 
and furthermore for every n G N and x9y G r? there exists p > n such that the 

distance between fnp(x) and fnp(y) in Tp equals the distance between /?(jc) and 
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/ffllk __^ A- >^ /-E-S. 
Figure 2. Subdivision of a foliated 2-simplex. 

fn(y) in T. (The definition in [GS] is more general, but the one just given is 
sufficient for us.) 

If G is finitely presented, we say that the strong convergence of Tn to T is 

trivial iffn: Tn 
? T is an isometry for n large. 

If G is not finitely presented, we have to be more careful; in particular, the 

convergence of (T, Gn) towards (T, G) should be considered trivial. 

Let Hn be the kernel of the epimorphism rn: Gn ?> G. Abstract nonsense 

gives an isometric action of G ~ 
Gn/Hn on the metric space Tn/Hn and a natural 

G-equivariant map Tn/Hn 
?> T. We say that the strong convergence from Tn to 

T is trivial if this map is an isometry for n large. 

1.2. Foliated 2-complexes, systems of isometries, Imanishi's theorem. Let 

A2 = 
{(jc, y,z) G R3 /jc + j + z = 

l;x,y,z > 0} be the standard 2-simplex. 

Definition 1.2. A foliated 2-complex (Z,^7, p) (or (Z,.F) or Z for short) is 

a connected finite simplicial complex Z of dimension less than or equal to 

2 (maybe a point or a graph); 
di foliation T, i.e., a decomposition of Z into disjoint subsets, called leaves 

(whose embedding in Z may fail to be proper), such that every edge is either 

contained in a leaf or transverse to T, and such that the foliation induced on any 2 

simplex is topologically conjugate to one of the following two types: A2fi{z 
= 

C} 
or A2 D {jc 

- 
y = C} (see Figure 1); 

a transverse measure p: on every transverse edge, there is a positive reg 

ular Borel measure, with finite total mass, absolutely continuous with respect to 

Lebesgue measure, with full support (every open subset has positive measure); 

this collection should be invariant under holonomy along the leaves. 

A leaf is called singular if it contains a vertex of Z, regular otherwise. 

Lemma 1.3. Let (Z,.F) be a foliated 2-complex. Let A be a finite subset of the 

l-skeleton. There is a subdivision Z' of I, such that each a G A is a vertex ofl!, and 

Z' (equipped with the induced measured foliation) is a foliated 2-complex. 

Proof. By induction on the cardinality of A. If A is a point, join it to the 

opposite vertex in each 2-simplex containing it, and check the foliation on the 

2-simplices thus created (see Figure 2). 
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Corollary 1.4. In the second condition of Definition 0.1, it suffices to require 
that restrictions of-K to transverse edges o/Z be morphisms. 

As another application, we observe that a surface endowed with a measured 

foliation in the sense of [FLP] may be triangulated so as to give a foliated 2 

complex. 
As E. Rips pointed out, actions of finitely generated groups on R-trees natu 

rally yield foliated 2-complexes. 
A finite R-tree is a compact R-tree which is the convex hull of a finite set. 

A finite tree may be degenerate, i.e., consist of only one point. 
Let # be a finite subtree of an R-tree T equipped with an action of a finitely 

generated group G. Let gi, ...,?* be a finite generating system for G. Assuming 
that 

KP\gJxK 
is nonempty, we consider the restriction ipj\ KC\gJxK 

? 
gjKDK 

of the action of gj. 
More generally, a system of isometries is a pair X = 

(K9{ipj}j=\?.jk)9 where 

A' is a finite R-tree and each (fji Aj 
?> 

Bj (called a generator) is an isometry 
between nonempty finite subtrees of K. 

If X is a system of isometries on a finite R-tree K9 we define (as in [GLP1], 
Part 1) a foliated 2-complex (Z(X),^7) (or simply Z) associated to X. Start with 

the disjoint union of K (foliated by points) and strips Aj x [0,1] (foliated by 
{*} x [0,1]). We get Z by glueing the strips Aj x [0,1] to K9 identifying each 

(t9 0) G Aj x {0} with teAjCK and each (t91) G A, x {1} with <pj(t) G Bj C K. 

Using Lemma 1.3, it is easy to subdivide each strip Aj 
x [0,1] in order to get the 

standard models of Figure 1. 

We will identify K with its image in Z. Fixing a base point in K9 we identify 

7riZ with the free group Fk on k generators gx,... 9gk, the generator gj corre 

sponding to the jth strip. 
We will use an important general fact about foliated 2-complexes. Given a 

foliated 2-complex (Z,^7), let (Z*,^7*) be the restriction to the complement of 

the set of vertices, and let E be the union of leaves of T* that are closed in Z* 

but not compact. The set E contains no regular leaves, so that its complement in 

Z* is an open set with finitely many components. 

Proposition 1.5. Let Ube a component 6>/Z* \ E. Either every leaf contained 

in U is compact, or every leaf contained in U is dense in U. 

Proposition 1.5 relies upon work of Imanishi about foliations [Ima]. The 

case of foliated 2-complexes may be deduced from Part 3 of [GLP1]: We may 
associate to a foliated 2-complex a system of isometries X in the sense of [GLP1], 
on a multi-interval D consisting of the disjoint union of all closed edges of Z 

(the generators of X are given by the holonomy within each 2-simplex). 
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Remark 1.6. We may be more precise in the statement of Proposition 1.5. 

In the first case, U is a (possibly twisted) family of compact leaves: U (or a 

2-sheeted covering of U) is foliated as a product T x {t}, with T a finite graph 
and t in an open subinterval of R (as a matter of fact, we may get rid of twisted 

families by subdividing Z). In the second case U is called a minimal component. 
It may be shown that every leaf of T meeting the frontier of U meets U. 

1.3. From foliated 2-complexes to R-trees. Let Z be a foliated 2-complex. 
We consider both the universal covering Z, and a normal covering 0: Z ? Z 

associated to a normal subgroup _V C n{L. Let T(T) and T(T) be the spaces 

associated to the lifted foliations T and T as in the introduction. 

We recall that T(f) is an R-tree (see [GS]), and we note that T(T) is equal 

to T(T)jN. Applying Theorem 1.1, we get: 

Proposition 1.7. Let (Z, T) be a foliated 2-complex. Let N be any normal 

subgroup of n\H generated by (free homotopy classes of) loops contained in leaves. 

If T is the pullback of T to the covering Z <?/Z corresponding to N, then T(T) is 

an R-tree (with an action ofn\L/N). 

Proof. The hypothesis on _V guarantees that _V is generated by elements that 

act elliptically on the R-tree T(F). 

Now suppose (Z,/7) is associated to a system of isometries (K, {<?/}/=_,.. ,*) 
as above. The group Fk = n{L acts on the R-tree T(T). Let i: K ?> T(Jr) be 

the map obtained by choosing a continuous lifting of K to Z and applying the 

canonical map from Z to T(Jr). 

Theorem 1.8. ([GL], Part I) 
1. The map i: K ?? T(F) is an isometric embedding of K into T(F), and we 

identify K and i(K). Every segment of T(T) is contained in the union of finitely 
many images ofK (under the action ofFk 

= 
n\L). 

2. Let T be an R-tree with an action ofFk. Assume K is isometrically embedded 

in T, with gjX 
= 

(fj(x)forj 
= 1,..., k and x G Aj C K. Then the embedding ofK 

into T extends uniquely to a morphism from T(!F) to T. 

2. Geometric actions and strong limits. An action of a countable group G 

on an R-tree T is said to be finitely supported if there is a finite subtree K whose 

images under G cover T. Note that a minimal action of a finitely generated group 

is finitely supported (see [AB], [Pau]), and that a tree with a finitely supported 
action is the union of an increasing sequence of finite trees. 

Proposition 2.1. A geometric action of a finitely generated group on an R-tree 

is finitely supported. 
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Proof. For every edge of Z (as in Definition 0.1), fix a lift in Z. These lifts 

inject isometrically into T = T(Jr)9 so that there is a finite subtree K containing 
them all. 

The following result relies on a construction suggested by E. Rips. 

Theorem 2.2. Every finitely supported action of a finitely generated group G 

on an R-tree T is a strong limit of geometric actions. 

Proof. Let gx,... 9gk be a system of generators of G and p: Fk ?> G the 

corresponding epimorphism. We write T as an increasing union of finite subtrees 

Kn that meet every orbit, with 
gJxKnfMCn nonempty forj 

= 1, ...,?. As in Section 

1.2 we consider the system of isometries Xn of Kn defined by ipj: Knf\gJxKn 
?> 

gjKn D Kn and the associated foliated 2-complex (Z?, Tn). Taking basepoints in 

Kn9 recall that we identify all groups 7TiZ? with the free group F* on generators 

gi? >g* (these identifications are compatible with the natural inclusions Zn ?? 

Zp for n < p). 
Let Af be the kernel of p: F* ?> G. Let r = 

g?1 ... 
g?^ 

be any element of N. 

If we choose n such that Kn contains all points gtj...g\rrx (1 <j < r) for some 

jc G T9 then there is a loop in Zn, contained in a leaf of Tn9 whose free homotopy 
class represents the conjugacy class of r. 

Define Nn as the smallest normal subgroup of 7TiZrt containing all elements 

r G N represented by a loop contained in a leaf of Tn. We let Gn = 
TrxI*n/Nn9 

and pn: 7riZn 
? 

Gn the quotient map. We see that N is the increasing union of 

the subgroups Nn9 so that G is the direct limit of the sequence Gn. 

Remark 2.3. If G is finitely presented, then for n large enough Nn = N9Gn = 

G, and the subgroup N c 7riZ? is generated by free homotopy classes of loops 
contained in leaves of Tn. 

Let Z? and Z? be^the 
universal covering and the covering corresponding to 

Nn respectively. Let Tn and Tn be the lifted foliations, and T(Tn)9 T(Tn) the 

corresponding metric spaces. We know that T(Tn) is an R-tree. By Proposition 

1.7 the space T^n) 
= 

TiF^/Nn is an R-tree Tn9 equipped with an action of Gn. 
We now proceed to show that the sequence of actions (G?, Tn) converger 

strongly towards (G, T). 

By Theorem 1.8 the tree T(Tn) contains Kn as an isometrically embedded 

subtree, and every segment in T(Fn) is contained in a finite union of images of 

Kn. Furthermore Theorem 1.8 yields a morphism from T^Tn) to T inducing the 

identity on Kn (we view T as a tree with an action of F*, via the epimorphism 

p: Fk - G). _ _ 
This morphism from T(!Fn) to T induces a^map fn from Tn to T = 

T/A^. 
Since neither fn nor the projection pn from JX^) to Tn increases distances, we 

deduce first that the restriction of pn to Kn is an isometric embedding, so that Tn 
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contains Kn as a subtree. In particular the action of Gn on Tn satisfies the second 

condition of Definition 0.1: it is geometric. 
Furthermore fn is a morphism, since it induces the identity on Kn and every 

segment in Tn is contained in a finite union of images of Kn. Similarly we get 

morphisms fnp: Tn ?> 
Tp inducing the inclusions Kn ?> 

Kp (n < p). All these 

morphisms are surjective because Kn meets every orbit (of the action of Gn on 

Tn, and of the action of G on T). 
The last thing to check is that the sequence Tn converges strongly towards 

T. Given x,y e Tn, choose p so that Kp contains both/n(jc) and/?()>). Then the 

distance between fnp(x) and fnp(y) in Tp equals the distance between fn(x) and 

fn(y) in T. 

Remark 2.4. We note the following features of this proof: 
1. If G is not finitely presented, let Hn be the kernelof the natural epimor 

phism rn: Gn ?> G. If the metric space Tn/Hn is an R-tree, then the action of G 

on Tn/Hn is geometric (same proof as for the action of Gn on Tn). 
2. We will show at the end of Section 3 that edge stabilizers of Tn are mapped 

injectively into G by rn. In particular (Gn, Tn) has trivial edge stabilizers if (G, T) 

does. 

3. If G is not finitely presented, view it as the direct limit of a sequence of 

finitely presented groups G'n obtained as quotients of Fk by the first n relations 

in a presentation of G. We claim that every finitely supported action (G, T) is a 

strong limit of geometric actions (G'n,T'n): in the construction above, we simply 
choose Kn so that the first n relations in the presentation of G are represented by 

loops contained in leaves of Fn, and we let Tn be the metric space associated to 

the lift of Tn to the Gfn -covering of Z?. 

Theorem 2.5. A geometric action of a finitely generated group G on an R-tree 

is not a nontrivial strong limit of actions (in the sense of Section 1.1). 

Proof. Suppose T is an R-tree with a geometric action of G. We thus have a 

foliated 2-complex (Z, T), with a covering 0: Z ? 
Z, as in Definition 0.1. The 

foliation defines a pseudodistance d on Z and T is the associated metric space. 

If e is an edge of Z transverse to the foliation, the second condition in 

Definition 0.1 implies that the restriction of d to e is just the distance defined by 

the transverse measure on e. If e is contained in a leaf, the restriction of d to e 

is identically 0. For convenience, we shall say that a map / from a subset A of 

Z to a metric space (X, 6) does not increase distances (resp. is an isometry) if 

S(f(x),f(y)) < d(x,y) (resp. 8(f(x),f(y)) = d(x,y)) for x,y G A. In particular the 
canonical map n: Z ?> T is an isometry! 

We first prove the theorem when G is finitely presented. We assume that a 

sequence of trees Tn, each with an action of G, converges strongly to T, and we 

want to show that the morphism fn: Tn 
? T is an isometry for n large. Since fn 
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does not increase distances and 7r: Z ?> T is an isometry, it suffices to construct 

(for n large) a G-equivariant map (pn: Z ?> Tn which does not increase distances 

and is a lift of 7r (i.e. /? o (pn 
= 

7r): 

F? 
* / i/n 

z ^U r 

First we construct (pn over the 1-skeleton Z , as an equivariant lift of n such . 

that the restriction of (pn to every edge is an isometry. Note that cp'n 
= 

fnnr o (pn 
has the same properties for n' > n. 

Fix a maximal tree L in the 1-skeleton of Z. Let L be a component of the 

preimage 0~X(L) c Z. By the second condition in Definition 0.1, the image 

7r(L) C T is a finite tree. 

Since the convergence of Tn towards T is strong, we can construct an iso 

metric section A^ of fp over tt(L) for p large, as follows. For each vertex v of 

7r(L), choose an arbitrary vx ?fxx(v). For/? large, the distance betweenfXp(vx) 

and/ip(^) in Tp equals the distance between v and i/ in T for every couple of 

vertices v91/9 and there is a section Xp offp sending each v tofXp(vx). 
We define (pp on L as \p 

o 7r, and we extend it to 6~X(L) equivariantly. 
Now let ? = [a9 b] be an edge of Z above an edge e tf_ L. For n > p large 

enough, the distance between Jp? 
o 

(pp(a) Mi&fpn 
o 

(pp(b) in Tn equals d(a9b). We 

may then extend the definition of (pn=fPn? <Pp first to e9 and then to 6~x(e) using 

equivariance. Repeating this operation finitely many times, we get the desired lift 

over the 1-skeleton. 

Finally, let A be a 2-simplex of Z. The map (pn is already defined on the 

boundary of A, and it is an isometry on each edge. Since Tn is an R-tree, the 

image of the edges is determined by that of the vertices. It follows that two points 
of the boundary of A that lie on the same leaf of T |A have the same image in 

Tn. This gives a canonical way to extend (pn to A. 

Doing this for every 2-simplex, we obtain an equivariant lift (pn of tt over the 

whole of Z. It has the property that, for any path 7 contained in a 2-simplex, the 

total mass placed on 7 by the transverse measure equals the length of (pn(l) in Tn. 
Since any path may be approximated by a finite union of paths, each contained in 

a simplex, this implies that <p? does not increase distances, completing the proof 
when G is finitely presented. 

The proof is basically the same in the general case, but now Tn is equipped 
with an action of a group Gn. Recall that Hn denotes the kernel of the epimorphism 

rn: Gn ?> G. The metric space Tn/Hn has an action of G, but we do not know 

that it is an R-tree. We want to show that it is G-equivariantly isometric to T9 
and we do so by constructing an equivariant, distance-nonincreasing, lift (pn of 7r 

lo f^/Hn: 
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(Tn,Gn) 

_ / 
(Tn/Hn,G) ifn 

Jn/ \ 
Z -^ (T,G). 

The construction of fa on the 1-skeleton is the same as before: we did not 

use the fact that Tn is a tree, but only the existence of sections of fn over finite 

subtrees of T. Such sections exist a fortiori for the map from Tn/Hn to T: simply 

compose a section of fn with the projection from Tn to Tn/Hn. 
Let A c Z be a 2-simplex as above. We have a map 6n from the boundary 

of A to Tn/Hn, and we wish to extend it to A. This is done by projecting 6n to 

T, lifting it to Tn (increasing n if needed), extending it to a map from A to Tn, 

and finally projecting it onto Tn/Hn. 
This gives a way to define fa on every 2-simplex in the same G-orbit 

as A. Since there are finitely many such orbits, we get the required distance 

nonincreasing map from Z to Tn/Hn. 

Let us now combine Theorems 2.2 and 2.5. A minimal action of G is finitely 

supported. It is a strong limit of geometric actions (of G if G is finitely presented) 

by Theorem 2.2. If the action is nongeometric, the strong limit is nontrivial (in 

the sense of Section 1.1): if it were, then T = 
Tn/Hn would be geometric by 

Remark 2.4. We have proved: 

Theorem 2.6. Let T be an R-tree with a minimal action of a finitely generated 

group G. 

1. If the action is not geometric, then it is a nontrivial strong limit of geometric 
actions (ofG ifG is finitely presented). 

2. If the action is geometric, then it may only be a strong limit in a trivial way. 

Corollary 2.7. An action is nongeometric if and only if it is a nontrivial strong 
limit (in the sense of Section 1.1). 

3. Standard forms for geometric actions, and finiteness results. Let T 

be an R-tree with an action of a group G. Recall that a branch point of T is a 

point x G T such that T \ {x} has at least 3 components. If jc and jc7 are branch 

points, the orbit closures Gjc, Gx! are disjoint or equal. As in [Lev2], we say that 

the action is a J-action if there are only finitely many distinct orbit closures of 

branch points. A minimal /-action of a finitely generated group has the properties 
that the quotient space, made Hausdorff, is homeomorphic to a finite graph, and 

the closure of an orbit cannot meet a segment in a Cantor set (see [Lev2]). 
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Our first finiteness result is: 

Theorem 3.1. A geometric action of a finitely generated group is a J-action. 

Proof. Let (Z, J7) be as in Definition 0.1. Let a be a point of Z whose image 
in Z belongs to a compact regular leaf. By Remark 1.6, this point a has a neigh 
borhood foliated as a product Lx {*}. This implies that its image in T cannot 

be a branch point. 
Now there exist finitely many leaves ?\9... 9?p of T such that every leaf 

either is compact and regular, or is contained in the closure of some l?. we 

simply take every singular leaf and one leaf in each minimal component. Lifting 
to Z and projecting to T9 we find finitely many orbits Gjc, (i = 1,... 9p) such 

that each branch point of T belongs to some Gxi. This shows that the action is a 

/-action. 

Using a general foliated 2-complex in Definition 0.1 might cause difficulties 

for applications. But Theorems 2.2 and 2.5 imply that a geometric action may be 

represented by a very special foliated 2-complex. 
Consider the sequence of trees Tn constructed in the proof of Theorem 2.2. 

If T is geometric, then T = 
Tn/Hn for n large: In other words, T is the space 

of leaves (made Hausdorff) of the foliation induced on the covering Z? of Z? 
associated to the epimorphism p: 7riZn 

? G. Furthermore transverse edges of 

Z? isometrically embed into T. We get: 

Proposition 3.2. Let G be a finitely generated group acting on an R-tree T. 

Let gi,.. .9gk be a finite generating system for G. If the action is geometric, then 

in Definition 0.1 we may take Z = Z(X), where X = (K9 {<Pj}j=\,...jt) is the system of 
isometries associated to a large enough finite subtree K <ZT as in Section 1.2. u 

We shall often represent a geometric action in this way. If G is finitely 

presented, we may also assume that N = Ker p is normally generated by free 

homotopy classes of loops contained in leaves of Z (Remark 2.3). We will call 

such a description of a geometric action a standard form. 

Remark 3.3. When G is finitely presented, our definition of a geometric ac 

tion is closely related to that in [BF2]. Indeed, suppose that the action is geometric 
in standard form. The subgroup N is normally generated by a finite number of 

loops contained in leaves of Z. One may then replace Z by another foliated 2 

complex Z', by glueing discs along these loops. Such a disc is understood to be 

part of a leaf. The tree T is then the leaf space made Hausdorff for the lift of the 

foliation to the universal covering of Z'. 

Our next goal will be to prove Theorem 0.8. 

Let G be a finitely generated group, and T an R-tree with a geometric action 

of G in standard form. In other words, we assume that T = 
T(F)9 where (Z, T) 

is the foliated 2-complex associated to a system of isometries X = (K9 {(pji Aj 
-? 
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Bj}j=\,.,k) and T is the lift of J7 to a G-covering 0: Z ? Z. When needed, we 

will view K as a subtree of T. 

If A C Z, let sat(A) be the union of all leaves meeting A. Let C\,.. ,Cm,... 

be the components of 0~l(K). Since Z is connected, we may order them in such 

a way that Im = CmD sat(Ci U U Cm-\) is nonempty for all ra. 

Lemma 3.4. Assume that n{Lis generated by free homotopy classes of loops 

contained in leaves ofT. Then the sets Im are connected, and the natural map from 
the set of leaves of T to T is one-to-one outside of a countable set. 

If the sets Im are closed, then T is obtained from C\ by successively glueing Cm 

isometrically along Im. 

Note that the assumption on n{L involves no loss of generality if G is finitely 

presented (see Remark 2.3). It is satisfied by the actions (Gn, Tn) constructed in 

the proof of Theorem 2.2. 

Proof. We argue as in Part 3 of [GLP2]. Say that a path 7: [0,1] -* Z (or by 

abuse its image) is taut if y~l(L) is connected for every leaf L of T. Any path 

contained in some Cm is taut. Since n\L is generated by free homotopy classes 

of loops contained in leaves, the proof of Lemma 3.3 of [GLP2] applies: If a 

path 7 between jc, y G Z is taut, then 
\^\y 

= 
d(x,y); ifj' is another path between x 

and y, then 7 is contained in sat(^'). The same argument as in [GLP2] (proof of 

Lemma 3.5) then shows that Im is connected. 

First assume that the sets Im are closed. Arguing again as in Part 3 of [GLP2], 
we see that any two points of Z may be joined by a taut path. The canonical map 

from Z to T maps each Cm isometrically, and T may be obtained from C\ by 

successively glueing Cm isometrically along Im. 

The key fact in this is that T is precisely the space of leaves of T\ the natural 

mapping taking a leaf of jF to its image in T is one-to-one. 

Without the assumption that the sets Im are closed, it is conceivable that a 

leaf containing an endpoint of some Im be identified with another leaf. But this 

may affect only countably many leaves. In other words, we have proved that the 

map taking a leaf of T to its image in T is one-to-one outside of a countable 

set. 

Lemma 3.5. If the action (G, T) has trivial edge stabilizers, then Im is closed. 

Proof. Assume it is not. As in [GLP2] (proof of Lemma 3.5), we find 7/ > 0 

and isometric maps p: [0,7/] 
?> Cm and q: [0,7/] 

?> C,- (for some 1 < ra) such 

that p(t) is in the same leaf as q(t) if and only if t > 0. 

Let p = 0 op and q = 0 o q. By the "segment closed" property ([GLP2], 

Theorem 2.3), there exists a word 
ip^ 

... <p?r defined on some nondegenerate 

segment / = 
p([0,77"]) and sending it to 7 = 

#([0,77"]) (Theorem 2.3 of [GLP2] is 

stated for a system of isometries on a multi-interval; it also applies to a system of 

isometries on a finite tree K, as may be seen by splitting K into a multi-interval 

as in [GLP1], Part 2). 
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Geometrically, we get a "band of leaves" joining / to / via y>Jrr(/), <PjlZl tfr W 
etc. Lift this band to Z with origin p([09 ry"]). It ends at some component Cj 

= 
gC(. 

Observe that g G G is nontrivial, since otherwise p(0) and q(0) would be on the 

same leaf. 

Now choose a point q(to) belonging to a regular leaf L of T with 0 < to < r)"9 
and a path 7,0 C L from q(to) to p(to)- Push this path onto nearby leaves, obtaining 
a continuous family of paths 7, contained in leaves Lt9 joining q(t) to p(i) for 

I r ? 
ro I <s. We see that g fixes the image of q([to 

? 
e9 to + e]) in T9 contradicting 

triviality of edge stabilizers. 

Theorem 3.6. Let T be an R-tree with a geometric action of a finitely presented 

group G. If the action has trivial edge stabilizers, there are finitely many orbits of 
branch points and the action has finite Z-rank. 

Proof. By Lemmas 3.5 and 3.4, the tree T may be obtained from Cx (which 
we identify with K) by successively glueing Cm isometrically along Im. 

A branch point of T thus belongs to the same orbit as a vertex of K or an 

endpoint of some Im. Let B c T be the union of orbits containing a vertex of K9 
or a vertex of some domain Aj (I < j < k). Geometrically, B is the image in T 

of all singular leaves of T. The image in T of an endpoint of Im belongs to B: 

otherwise one could extend Im past the point. It follows that every branch point 

belongs to B9 the union of finitely many orbits. 

To see that the action has finite Z-rank, we simply note that T is a A-tree, 
where A is the subgroup of R generated by all distances between vertices of K9 

Ai,... 9Ak9 BX9... 9Bk. 

We now prove: 

Theorem 3.7. If a finitely generated group G acts on an R-tree T, then G is 

the direct limit of finitely generated groups Gn acting geometrically on R-trees Tn 
such that the edge stabilizers for Tn are subgroups of edge stabilizers for T.IfG is 

finitely presented, then we may take G = Gn. 

Proof. Let us consider the geometric actions (G?, Tn) constructed in the proof 
of Theorem 2.2. Recall that G is the direct limit of the sequence Gn. If G is 

finitely presented, then Gn = G for n big enough (Remark 2.3), and the result is 

clear since there is a G-equivariant morphism from Tn to T. 

If G is not finitely presented, we apply Lemma 3.4 to the action (G?, Tn) (it 
does satisfy the assumption that 7riZ? is generated by free homotopy classes of 

loops contained in leaves of Tn). 

Suppose that h G Gn fixes a nondegenerate segment in Tn. Then it fixes some 

x G Tn which is the image of only one leaf of Tn. In geometric terms, this means 

that in Z? there is a loop contained in a leaf of Tn9 whose homotopy class is 

mapped to (a conjugate of) h by the epimorphism pn: 7riZw ?> Gn (in fact there 

is a whole band of leaves representing h9 but we don't need this). 
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Thus ft is the image of a word r G Fk that is represented by a loop in a leaf 

of Tn. If ft is mapped to the identity in G by the canonical map rn: Gn 
? 

G, 

then r belongs to _V, hence to Nn, and ft is the identity in Gn. We have proved 
that rn: Gn ?> G is injective on each edge stabilizer. The result follows. 

4. Minimal subtrees of geometric actions. We start with a very general 
fact. 

Proposition 4.1. Let T be an R-tree with an action of a group G. Let K dT be 

a subtree such that every closed segment may be covered by finitely many images 

hiK. The mapping To ?- A = To C\ K defines a bijection between the set of nonempty 
invariant subtrees To C T, and the set of nonempty subtrees A C K such that: 

1. If a G A and ga G K, then ga G A. 

2. The set {ft G G | ftA fl A j* 0} generates G. 

The inverse mapping is given by To 
- 

Ug^cgA. IfK is closed, then To is closed if 
and only if A is closed. 

Proof Let To be nonempty invariant. Since K meets every orbit, the set 

A = To fl K satisfies To = 
Ug(EG gA. It clearly satisfies condition 1. To show 

that A satisfies 2, fix a G A and g E G. Cover the segment [a, ga] by finitely 

many images gtK, with g\ = lG, gp 
= g, and gtK H g^itf fl [a, go] ^ 0. Setting 

hi = 
giXgi+\ 

we have g = fti ... 
ftp_i with A fl ft/A 7/ 0. 

Conversely, take A C K satisfying 1 and 2. Let To = 
UgGG ?-4. This is a 

subtree because of condition 2, and 7b H A' = A because of condition 1. 

This shows that we have two inverse bijections. There remains to show that 

7b is closed if K and A are. If To is not closed, there exists a segment [a, b] 
with [a,b] fl 7b = 

(#,?]. Changing fo if necessary, we may assume that [a,b] is 

contained in some gK. This means that A is not closed. 

Theorem 4.2. Let T be an R-tree with a geometric action of a finitely generated 

group G. If there is no global fixed point, then the minimal subtree _Tmin is closed 

in T, and the restriction of the action to Tm\n is geometric. 

Proof As mentioned in Proposition 3.2, we may assume that the geometric 
action is in standard form, that is, T = T(T), where (Z, T) is the foliated 2 

complex associated to a system of isometries X = 
(K, {^: Aj 

? 
B/}>_if...,*) and 

JF is the lift of T to a G-covering 0: Z ? Z. We view K both as a subcomplex 
of Z and a closed subtree of T. We may further assume K D gjK Pl Tm\n ^ 0 

(7=1,...,*). 

Let Amin = Tmin fl #. We want to show that it is closed. A subset of Z is 

f-saturated if it contains the leaf through any of its points. 
Since Amin satisfies condition 1 of Proposition 4.1, it is the intersection with 

K of an ^-saturated subset Zmjn C Z. Let U be a minimal component of J7* (as 
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defined in Section 1.2). By Remark 1.6 every leaf of T meeting U meets U. It 

follows that either Zmin is disjoint from (/, or Zmin contains U. 

If 0 G Amhi \Amin, there is then a segment (a9 b] c Amm meeting only compact 
leaves of T. The image of (a9b] in T is a segment (jc,y] containing no branch 

point, with [jc,y]nrmin 
= 

(jc,y]. This contradicts the minimality of rmm: the union 

of all orbits contained in Tm[n and disjoint from (jc,y] is a proper invariant subtree. 

We have thus proved that rmjn is closed. 

Now consider Zmin c Z. It is compact and ^-saturated. The hypothesis 

KHgjKDTmin ^ 0 implies that the inclusion Zmin 
? Z is a homotopy equivalence. 

(Recall indeed that Z collapses to a bouquet of circles, K collapsing to the vertex 

and each strip Aj x [0,1] to one of the circles. Since KHgjKH Tm{n is connected 

and nonempty, so is Zmin.) In fact there is a natural strong deformation retraction 

from Z to Zmin. This retraction does not increase distances, in the following sense: 

If a path 7 c Z joins two points of Zmin, it is homotopic to a path 7' c Z^n such 

that \y\f < \i\t- This implies that TmXn is geometric: it is isometric to TC^minX 
where ^"min is the pullback by 0 of the restriction of T to Zmin. 

5. Geometric simplicial actions. Let us first give an alternative construc 

tion of the Bass-Serre tree (see [Ser, SW]) of a graph of groups. 

Suppose G is the fundamental group of a graph of groups Q9 with underlying 

graph T, edge groups Ge9 and vertex groups Gv (we consider edges as unoriented). 
For every edge group Ge, let Se be a set of generators and Fe be the free group 
on Se. For every vertex v9 choose a set Sv of generators of Gv which contains 

the disjoint union of the (images by the monomorphisms of Q of the) sets Se9 
for e adjacent to v (it should contain two copies of Se if e is a loop). Let Fv be 

the free group on Sv. If e is adjacent to v, the monomorphism Ge 
? 

Gv fits in a 

natural commutative diagram 

Fe 
- 

Fv 

1 1 
Ge 

- 
Gv. 

For every vertex v (resp. edge e)9 let Bv (resp. Be) be a bouquet of circles 

indexed by Sv (resp. Se). Let (Z = 
Zg,^7) be the foliated 2-complex obtained 

as follows (after a suitable triangulation, see Lemma 1.3). For every edge e9 

take Be x [0,1] foliated by Be x {*}. If v and w are the endpoints of e9 glue 

Be x {0} cBfx[0,l] to the sub-bouquet of circles of Bv corresponding to the 

generators of Se9 and glue similarly Be x {1} to Bw. The leaves of T are the 

bouquets of circles Bv, and the sets Be x {t} for t G (0,1). 
The group 7riZ is the fundamental group of the graph of groups with un 

derlying graph T, edge groups Fe, and vertex groups Fv. The epimorphisms 

pe: Fe ?> Ge and pv: Fv ?> Gv induce an epimorphism p: 7riZ ?> G. 
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Let Z be the covering of Z associated to p, and T the lifted foliation. The 

space T(T) is endowed with the natural action of G. 

Proposition 5.1. T(T) is the Bass-Serre tree ofQ. 

Proof. The kernel of p is normally generated by elements belonging to the 

kernels of the epimorphisms pv. These elements are represented geometrically by 

loops in the leaves Bv of J7. According to Proposition 1.7, the space T(T) is an 

R-tree. 

Because of the product structure of T in each piece Be x (0,1), this tree is 

simplicial. The quotient of T(T) by the action of G is T, the leaf space of T. 

The product structure also implies that the pseudodistance d(x,y) between 

jc, y G Z is 0 if and only if jc, y belong to the same leaf. This means that, up to 

conjugacy, stabilizers of edges (resp. vertices) of T(T) are images in G of the 

fundamental groups of the leaves Be (resp. Bv) of T, that is Ge (resp. Gv). 

The result now follows by the characteristic property of the Bass-Serre 

tree. 

In what follows, we consider a finitely generated group G acting on a tree 

T. We assume that the action is simplicial (T is a simplicial tree, with every 

edge of length one) and minimal (finitely supported would suffice). Let Q be the 

associated graph of groups. 

Theorem 5.2. The minimal simplicial action (T, G) is geometric if and only if 

every edge group is finitely generated. 

Remark 5.3. (1) Since G = n\Q is finitely generated, finite generation of edge 

groups implies finite generation of vertex groups (see [Coh] p. 218). 

(2) A finitely generated group may be the fundamental group of a graph 
of groups with nonfinitely generated edge and vertex groups. For instance, the 

free group of rank 2 on generators ao, t has the presentation (t, {<Z|}ieN? ai+\ = 

t~lajt) corresponding to an HNN extension of the free group with countable basis 

({flf}i N> 

Proof. First assume that the action is geometric, associated to (Z, p, T) as in 

Definition 0.1. Since orbits in T are discrete and transverse edges of Z isometri 

cally inject into T, all leaves of T are compact. 

Using Remark 1.6, we see that the pseudodistance d(x, y) between any two 

points jc,^ G Z is realized by a path. In particular d(x,y) 
= 0 if and only if x,y are 

in the same leaf of T. Thus the stabilizer of any point in T is finitely generated: 
it is obtained by mapping the fundamental group of some leaf of T into n{L, 

and then into G by p. Since the stabilizer of an edge is the stabilizer of any of 

its points (except maybe its midpoint), edge groups also are finitely generated. 

Conversely, assume finite generation of edge groups (hence also of vertex 

groups by Remark 5.3). Then the 2-complex Z^ constructed at the beginning of 
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the section may be taken to be a finite complex. This implies that the correspond 

ing action of G is geometric. 
We sketch another proof, based on Theorem 2.6. For simplicity we assume 

that G is finitely presented. We suppose that T is a strong limit of R-trees Tn9 each 

equipped with an action of G. We show that this limit is trivial by constructing 
an equivariant section </?: T ?> Tn for n large. Arguments are similar to those 

used in the proof of Theorem 2.5. Finite generation of vertex groups allows us 

to construct <p over the 0-skeleton, and finite generation of edge groups allows 

us to extend (p to the whole of T. 
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