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Abstract. Given a measure-preserving equivalence relation R with countable classes, we
study relations between the properties of R and metric invariants. We give applications
to pseudogroups of measure-preserving homeomorphisms.

0. Introduction and statement of results
Let R be a measurable equivalence relation with countable equivalence classes on a
standard Borel space X. We assume that there is an /?-invariant probability measure fi
and we want to relate the properties of R to metric invariants, especially what we call
the cost of generating R (as measured with respect to /A).

Our motivation and interest come mainly from topology and dynamics: X is a
compact metric space and classes of R are orbits of a measure-preserving pseudogroup
of homeomorphisms (a special example is provided by pseudogroups of isometries on
the circle or on the line, see [Le2], [GLP1], [GLP2], [Ga]).

Our main results, however, have nothing to do with topology, so that we first work
in a purely measure-theoretic context.

To establish the ideas, we may view the classes of R as orbits of an action of a
countable group G by /i-preserving automorphisms [FM]. If G is finitely generated,
with k generators, we think of R as generated by k automorphisms defined on the whole
of X, for a total cost of k.

In general there are cheaper ways to generate R, using partially defined isomorphisms.
Let a generating system for R be a countable family <J> = (cpj : Aj ->• Bj)jej of

/x-preserving isomorphisms between Borel subsets of X, such that R is the smallest
equivalence relation satisfying <Pj(x) ~ x for all ; £ J and x e Aj. We often refer to
the equivalence class R(x) of x as the orbit of x under 0 .

The cost of <1> is

= \ f a(x)dn(x),
2- Jx
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where a(x) € N U {00} is the number of sets Aj, Bj containing x. The number
is nonnegative, possibly infinite. For instance, if R is amenable, it admits a generating
system <t> consisting of only one element [CFW] and €(O) < 1.

We shall relate I to a number e(R), which should be viewed as the 'measure of the
quotient space X/R' (see [Le2]). The following proposition may be compared with
Rohlin's lemma in ergodic theory.

PROPOSITION 1. Let R be a measure-preserving equivalence relation with countable
classes on the standard probability space (X, fi). The following three numbers are equal:
(i) e\ (R) = Jx ^- dfi(x), where nx is the cardinality of the class R(x) and ^ = 0.
(ii) e2(R) = inf {/x(A) | A meets every class at least once},
(iii) e3(/?) — sup{/x(A) | A meets every class at most once}.

The common value of these numbers will be denoted e(R), or e(<$>) if <J> is a generating
system for R. Note that e(R) = 0 if and only if almost every class is infinite.

THEOREM 2. Let <t> be a generating system for the equivalence relation R. Then
e(<f>) + £($) > 1 always holds. The number e(Q>) + €(O) is equal to 1 if and only
if R is amenable and the generators <pj are independent.

The generators are independent if there is no relation, a relation being defined as a
nontrivial reduced word w in the letters cpj and <pj whose fixed point set has positive
measure (in particular, the domain of w must have positive measure). A finite set of
independent generators defines a treeing of R in the sense of [Ad]; conversely, a treed
equivalence relation admits independent generators (Proposition 7).

A special case of Theorem 2 is proved in [Le2, Corollaire II.5], Being able to assert
£($>) = 1 was important in [GLP1] (to detect interval exchange transformations) and
in [GL] (to compute the exact dimension of the boundary of Culler-Vogtmann's outer
space).

Theorem 2 implies for instance that one has to pay a minimum price of 1 in order
to make every class infinite; the price is higher if one wants to create a nonamenable
relation.

Given R, a natural question is to determine £(/?), defined as the infimum of £(<$>)
over all generating systems. For instance, is l(R) strictly bigger than 1 if R comes from
a free action of a nonabelian free group? If so, this would lead to a nontrivial numerical
invariant for (nonamenable) discrete groups.

The proof of Theorem 2 uses a theorem by Adams [Ad]. Consider an equivalence
relation with a treeing. This means that almost every equivalence class R(x) is (the
set of vertices of) a locally finite tree, in a measurable way. One may then study such
properties as growth or number of ends. Adams proved that R is amenable if and only
if R(x) has at most 2 ends for almost every x (for our purposes, this may be taken as a
definition of amenability).

Adams also proved that almost every class with > 3 ends has exponential growth.
Denoting Bn(x) the number of points in R(x) at distance < n from x, we prove:

PROPOSITION 3. Let R be a treed equivalence relation. Almost every equivalence class
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with 2 ends has linear growth: the set of x e X such that R(x) has 2 ends and
limsup,,.,.^, Bn(x)/n = +oo has measure 0.

Conversely, an argument by Gaboriau implies that almost every class has 0 or 2 ends
if growth is uniformly linear (see Proposition 8).

We now turn towards topology. We suppose that X is a compact connected metric
space and that fj. is positive on every nonempty open set. We consider a countably
generated pseudogroup F of /z-preserving homeomorphisms between open subsets of X
(we shall recall the definition of a pseudogroup in part III). Elements in a generating
system <J> are required to have open domains. Strict inequalities may then be forced by
topology rather than by measure theory.

One can associate with (the equivalence class of) F a group 7r\BV, the fundamental
group of Haefliger's classifying space BV (see [Ha], [Sa]). There is a natural
homomorphism p : JT\X ->• 7i\BF, and we define ii\BT as the quotient of 7TifiF
by the normal subgroup generated by the image of p.

PROPOSITION 4. Let <£> be a generating system for F. Ifn\BV is not free, or if it is free
of rank strictly lower than the cardinality of<t>, then e(<t>) + £(<!>) > 1.

If a group G acts on X by homeomorphisms, restrictions to open sets of elements of
G generate a pseudogroup. We call such pseudogroups homogeneous.

PROPOSITION 5. Let F be the homogeneous pseudogroup generated by an action of a
countable group G by ^.-preserving homeomorphisms. If <& is a generating system for F,
then e(<t>) + £(<$>) > 1 unless O consists of a single element and the action of G factors
through Z.

Our last result is a generalization of Lemma III.5 of [Lei]. It implies that
certain pseudogroups of isometries are homogeneous, or are limits of homogeneous
pseudogroups.

Let G be a group acting by isometries on a metric space X. Let <P be a generating
system for a pseudogroup F such that each <pj is the restriction to Aj of the action of an
element gj e G. For £ > 0 we let FE be the pseudogroup generated by the restriction of
gj to the £-neighborhood of Aj.

PROPOSITION 6. Let G be a group acting by isometries on a connected metric space X
(possibly noncompact). Let F be a pseudogroup generated by restrictions of elements
gj € G to open subsets Aj. Assume that G is abelian and some orbit ofT is dense in X.
Then for e > 0 the pseudogroup F£ is homogeneous and independent of s.

1. Proof of Proposition 1 and Theorem 2
First we prove Proposition 1. It suffices to do so under the hypothesis that nx is constant
and bigger than 1. Let q e N be the value of nx if it is finite, a large integer otherwise.

By [FM] we may assume that classes of R are orbits of a /x-preserving action of a
countable group G.
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LEMMA. There exists a countable family of (possibly empty) subsets A,- C X such that:
(i) every orbit of G meets exactly one A,-;
(ii) for each i, there exist q — 1 elements g\,..., g'q_x e G such that the sets

Aj, g\Aj,..., g' _, A; are pairwise disjoint.

Proof. Make a list K\,K2,... of all (q — l)-uples of distinct elements of G. Let
K\ = ( £ ] , . . . , ^ _ ] ) be the first in the list. To define A\, consider sets A c X such that
A, g\A,..., g'_, A are pairwise disjoint. If the empty set is the only such set, we let
A\ = 0. Otherwise, a standard argument based on Zorn's lemma shows that there exists
such a set which is maximal (up to sets of measure 0). We call it A].

In general, we consider the f * element (g\,..., g'^) in the list. We let A,- be maximal
among sets A such that A, g\ A , . . . , g'tA are pairwise disjoint and no G-orbit meets
both A and A\ U . . . U A,-_i.

The only nontrivial thing to prove is that (almost) every orbit meets some A,-. By way
of contradiction, assume that there is a G-invariant set B of positive measure disjoint
from every A,. Since orbits have q elements or are infinite, there exists an index i
such that the q points x, g\x,..., g' tx are distinct, for x in a subset of B of positive
measure. By standardness of the Borel space X, we can find C c B o f positive measure
with C, g\C,..., g'q_\C disjoint. This contradicts the maximality of A,-. •

If G-orbits have cardinality q, we note that A = (J(- A,- has measure \/q and
meets every orbit exactly once. Furthermore there exist ^-preserving bijections <pj
(j = 1, ...,q — 1) from A to [Jj g'jAi, defined by <pj(x) = glx if x e A,-. Given
any Y c X, let YA be the set of points of A whose orbit meets Y. If Y meets every orbit
at most once, then

If Y meets every orbit at least once, then YA = A and /x(F) > ix(YA) = l/q. This
proves Proposition 1 if orbits are finite.

If orbits are infinite, then A has measure < \/q and meets every orbit at least once.
Since q is arbitrary, we have proved e\(R) = eiiR). Now suppose Y meets every orbit
at most once. We want to prove fi(Y) = 0. Define a /i-preserving injection i : Y -> A
as follows: if g\, ...,gn,... is an ordering of the elements of G, then i(y) = gny
where n is the smallest index such that gny € A. We get (JL(Y) < \/q for all q, so that
li{Y) = 0. •

Remark. The proof shows that the supremum in the definition of e3 is always achieved.

The infimum in the definition of ei is achieved if and only if almost every class is finite.

•
Before proving Theorem 2, we note:

PROPOSITION 7. An equivalence relation R defined by a system of independent generators
with £(<£) < +oo is treeable (in the sense of [Ad]). Conversely, a treeable equivalence
relation may be defined by a system of independent generators.

Proof. If generators are independent, we make almost every equivalence class into a
tree by placing an edge between x and y if and only if there exists j e J such that
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y = (pj(x). The assumption t(<t>) < +00 guarantees that almost every tree is locally
finite.

Conversely, suppose R is treed. View equivalence classes as orbits of an action of
G as before. Make a list g\,..., gn,... of elements of G. We construct a system of
independent generators (cpn), where <pn is the restriction of the action of gn to the set of x
such that there is an edge between x and gnx and there is no m < n with gn(x) — g^l(x)
(to avoid unpleasant technicalities, we may assume that G has no element of order 2).

D

Proof of Theorem 2.
• Our first goal is to prove the inequality e(<t>) + £(<t>) > 1.
First let * be any family of /x-preserving bijections. Let * ' be obtained by adding

to ^ a new generator y : U -*• V. Then

£(*') >

The first two inequalities are obvious. The third one holds since, given any set A meeting
every orbit of * ' , the set A U U U V meets every orbit of * .

We shall now show that there exists a set B meeting every orbit of * , with
H(B) < fJ-(A) + IM(U). This will yield the inequality

e(*')+ *(*')> *(*)+*(*)• (*)

Any point x e X may be sent into A by successively applying y, y~l, and elements
of * . Let s(x) e N be the minimum number of times one has to apply either y or y"1

(the minimum being taken over all possible ways to send x into A). Define:

B, = {x € u I *(*) > *(KJC)}

B2 = (x e V I J(X) > J(y- 'x)}.

Then fi(B\) + IX(BJ) < fi(U) since B\ and y~lB2 are disjoint subsets of £/. On the
other hand B = A U B\ U B2 clearly meets every orbit of ty. We have thus proved (*).

We can now prove e(<J>) + £(<!>) > 1 for any system $ = (<pj)jeJ. If J is finite we
argue by induction on its cardinality, using (*) and noting that e = 1 and I = 0 for the
empty system. If J is infinite, we may assume that J = N and that €(O) is finite. Let
®n — (<Pj)j=\ n- Writing

«(*) + 2£(<D) > «(*„) + 2£(<Dn) > 1 + *(<&„),

we get e(<t>) + £($) > 1 because £(0) — £(<£„) goes to 0 as n goes to 00 (since
e(O) < e(<Dn), we see that in fact e(<J>) + £(<!>) is the limit of e(0«) + £($„)).

• Now we prove e(ct>) + £(<!>) > 1 if there is a relation. Suppose some
nontrivial element qpf1 . . . qpj' (with e,- = ±1) is the identity on a set A of
positive measure. We may assume that p has been taken to be minimal. The
points x, (p£jP(x), <PJP~>

I<PJ''(X), . . . , <pe*... <p*p{x) are then distinct for almost every
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x e A. By standardness of X there exists B C A of positive measure with
B, (pj"(B),..., q>j*... <Pjr(B) disjoint. Replacing the generator <pjp by its restriction to
Aj \ B (resp. Aj \ cpj (B)) gives a system <J>' with the same orbits. We then have:

• We may now assume that the generators cpj are independent. The important case is
when €(<!>) is finite. The equivalence relation R is then treed (see Proposition 7). Adams
has proved [Ad] that R is amenable if and only if almost every equivalence class, viewed
as a tree, has at most 2 ends. We shall now complete the proof (when £(<!>) is finite) by
showing that

e(<t>) + €(O) = 1 if and only if almost every class has at most 2 ends.

First we treat a simple case: assume that almost every x belongs to at least two of the
sets Aj, Bj (equivalently: almost every class is a tree in which every vertex has valence
> 2). Then e(<t>) + €(4>) = 1 if and only if almost every x belongs to exactly two of
the sets Aj, Bj. This is equivalent to saying that almost every tree is isomorphic to the
line, and, in particular, has two ends.

In the general case we use a process of erasing. Such a process was successfully used
by Rips in his study of actions on K-trees (see [GLP1]). We shall presently explain a
way of replacing a system <t> by a new system 4>'. Since O' will be defined on a subset
X' of X, we shall not compare e +1 to 1 but to the total measure of the space, to be
denoted m.

Given <J>, let / be the set of points x € X that do not belong to any of the sets Aj,
Bj. Let Uj be the set of points belonging to Aj, but not to Bj or any other set A*, B*
(k ^ j). Similarly, let Vj be the set of points belonging to Bj but not to Aj or any A^,
Bk- Let X' be obtained from X by removing / and the union of all sets Uj, Vj. We
define a system $ ' on X' by restricting each <pj to Aj \ (Uj U <p~' Vj).

The effect of the modification on the orbits of <J>, viewed as trees, is the following.
Orbits consisting of one or two points disappear (they do not meet X'). Other orbits lose
their vertices of valence 1, together with the corresponding open edge. In particular, the
number of ends does not change.

The difference e+£—m is the same for <J> and $', as shown by the following formulas
(t denotes the measure of the union of all O-orbits consisting of 2 elements):

Having defined the elementary process <t> i->- $' , we can now define a sequence <P",
with <t>° = <t> and <S>n+l = (<t>")'. Each O" is defined on a space X" and has generators
(p" defined on smaller and smaller sets A":. We consider the limiting system <t>°° defined
on X00 = f]n X", with generators (pf defined on f|n

 Aj- The theorem holds for <J>°°
because we are in the special case treated above.
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The equality e +1 = m holds for <J>°° if and only if it holds for O. On the other
hand, O-orbits with less than 2 ends are completely erased: they do not meet X°°. The
orbits of <J>°° are precisely the intersections with X°° of O-orbits with at least 2 ends,
and the number of ends is preserved. It follows that almost every O-orbit has at most 2
ends if and only if almost every <J>°°-orbit has at most 2 ends, and the theorem is proved
for £(cj>) finite.

• Finally we note that, if C(<P) is infinite, the equivalence relations generated by the
finite systems <3>n used in the proof of e +1 > 1 are not amenable. It follows that R is
not amenable. •

2. Proof of Proposition 3
Let T be a locally finite tree with 2 ends. It has a trunk T°°, the unique geodesic joining
the ends. Every component of T \ T°° is a finite tree. There is a projection re : T —*• T°°
sending a point y to the point in T°° closest to y. For x e T°° we let g(x) be the
cardinality of the preimage IT (X).

Let Bn(x) be the number of points of T at distance < n from x. If x e T°° we have

(**)
y

the sum being taken over the In + 1 points in r°° at distance < n from x.
Now consider a treed relation R. In order to prove Proposition 3 we may assume that

almost every class has 2 ends. Recall the erasing process used in the proof of Theorem 2.
The 'limit set' X°° is simply the union of all trunks (up to a set of measure 0). Note that
it has positive measure since classes are countable. We consider the function g defined
on X°° as above. It belongs to L\X°°) since

f
Jx°
f
x°°

Assume for the moment that we can select one of the two ends of the tree R(x) in a
measurable way. We then get an automorphism / of X°° as follows: a point x e X°°
belongs to the trunk of R(x) and we let f{x) be its closest neighbor in the trunk, in the
positive direction. Using (**) we get:

for x e X°°. Since g e LX(X°°), the right-hand side has a finite limit for almost every
x e X°° when n -*• + oo, by Birkhoff s ergodic theorem. We thus get the finiteness of
lim supn^.+oo ^ ^ for almost every x 6 X00, hence also for almost every x e X.

There remains the problem of orienting the trunks. This is taken care of by 'passing
to a 2-sheeted covering' (cf. [Gh]). D

The following partial converse, based on [Ga, Proposition VI.l], was worked out with
Gaboriau.

PROPOSITION 8. Let R be a treed equivalence relation. Assume there exists a constant C
such that Bn(x) < Cn for every n > 1 and almost every x e X. Then almost every class
has 0 or 2 ends.
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Proof. Since classes with at least three ends have exponential growth by [Ad], we assume
that almost every class has exactly one end and we argue towards a contradiction.

Once again we apply the erasing process. Consider the set Xp consisting of points
that remain after p steps. Since classes have one end, the limit set X00 = f]p X

p has
measure 0 and fJi{Xp) goes to 0 as p goes to infinity.

Fix integers p < n. For x e X let B%(x) be the number of points of R(x) that are
at distance < n from x and belong to Xp. Note the inequality B%(x) >n — p: on the
infinite ray joining x to the end of R{x), at most p points may lie outside of Xp. We
then write

n-p< I Bp(x)dn(x) = f Bn(x)dfj.(x) < Cnn{Xp).
Jx JXP

Letting n go to infinity we find that /u.(Xp) is bounded away from 0, a contradiction. •

3. Proof of Propositions 4, 5 and 6
First recall that a pseudogroup of homeomorphisms of a space X is a collection V of

homeomorphisms y : U -> V between open subsets of X satisfying the following
conditions:
(i) The identity map of X belongs to F.
(ii) If y e f and U' C U is open, then the restriction of y to U' belongs to F.
(iii) If y e r , then y~l : V -> U belongs to F.
(iv) If y, y' e F, then the composition y' o y (defined on y{U) n U') belongs to F.
(v) If every x e U has a neighborhood W such that the restriction of y to W belongs

to F, then y e F.
Given a set of homeomorphisms yj : Uj -*• Vj (such as those obtained from a group

action), the pseudogroup generated by this set is the smallest pseudogroup containing
each yj.

Proof of Proposition 4. We may assume that the domain of each cpj is connected. The
group Jt\ BV then admits the following presentation: generators are elements of J, relators
are words j ^ ... fv* such that <Pj' ... <pjp is the identity on some nonempty open set. The
hypothesis on TT\ BV guarantees that there is a nontrivial relator. Since fi has full support,
the generators <pj are not independent. The result follows. •

Proof of Proposition 5. Suppose e(<t>) + £(<!>) = 1. Then the generators of $ are
independent. Let g be an element of G that acts non-trivially. Each x e X has a
neighborhood on which the action of g is represented by some reduced word w in
the generators cp^1. This w is uniquely determined, since generators are independent.
It follows that w has to be defined on the whole of X (recall that X is connected).
Consequently $ consists of only one element <p, since otherwise £(<!>) would be bigger
than one. The action of any g e G is given by some power cpr<-s\ and the action of G
factors through the homomorphism r : G -*• Z. •

Proof of Proposition 6. First note that F£ depends on F, but not on the chosen set of
generators <pj = gj\Aj. Also (FE)£' = F£+e/.

The existence of a dense orbit for F implies that every orbit of F, is dense for t > 0,
so we may as well assume that every F-orbit is dense.
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Fix £ > 0. Given g e G, let Ug be the largest open set such that the restriction of
g to Ug belongs to Fe. We shall show that Ug is either empty or equal to the whole of
X. This will imply Proposition 6: Ve is the homogeneous pseudogroup generated by
the action of H, the subgroup of G generated by the elements gj (we tacitly suppose
Aj * 0).

Let h be any element of G. Assuming that £//, contains some nonempty open set O,
we first show that d(y, hy) < e => y e Uh (of course d denotes distance in X). Let y
be an element of T representing some v e G and taking y into O: it exists because we
assume that every F-orbit is dense. Then hy e Uv since d(y, hy) < s, and hvy = vhy
belongs to Uv-\ (recall that G is abelian). It follows that y e £//,: we can go from y to
hy in Fe, by applying y, then h, then v~l.

Next we show that Ug is dense in the e-ball around x if x e Ug. Let y be e-close to
x. Choose elements yn e I \ representing hn e G, such that ynx converges to y. Then
d(gx, hngx) = d{gx, ghnx) = d(x, hnx) is < e for n large, and gx belongs to Uhn by
the preceding argument (applied to hn). It follows that ynx belongs to Ug.

Since X is connected, we have now proved that every Ug is either empty or dense.
Applying this to IV with e' < s, we see that Ug is indeed empty or equal to X. •

Acknowledgement. I wish to thank A. Fathi, D. Gaboriau and F. Paulin (who helped
me prove Proposition 3) for very useful conversations. This research was started during
a stay at the University of Florida at Gainesville in 1989.
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