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GEOMETRIC GROUP ACTIONS ON TREES

By GILBERT LEVITT and FREDERIC PAULIN

Abstract. We define geometric group actions on R-trees, as dual to a measured foliation on a 2-
complex with some finiteness and injectivity properties. We prove that an action is nongeometric
if and only if it is a nontrivial strong limit in the sense of Gillet-Shalen. We give a simple new
construction of the Bass-Serre tree of a graph of groups, and we show that a simplicial action is
geometric if and only if edge groups are finitely generated. We prove that geometric actions with
trivial edge stabilizers have finitely many orbits of branch points, and finite rank.

Introduction. An R-tree is an arcwise connected metric space in which
every arc is isometric to an interval of R. See for instance [Shal, Sha2, Mor] for
historical remarks, references and motivation.

It is well-known that codimension one measured foliations (or laminations)
on compact manifolds have strong connections with group actions on R-trees
(see [MS1, MO]). This was used for instance by Morgan-Shalen [MS2] to show
that (most) surface groups act freely on R-trees. Conversely, a theorem by Skora
[Sko] (see also [Ota]) asserts that every (minimal) action of a surface group m; X
on an R-tree with cyclic arc stabilizers is geometric: it comes from a measured
foliation on X.

On the other hand, many interesting actions cannot be obtained from folia-
tions. For instance, iteration of (irreducible) automorphisms of finitely generated
free groups leads to actions that may fail to be geometric (see [BF2, GL]).

This concept of a geometric action on an R-tree has been used by many
authors [GSS, BF1, BF2, Mor, GL, Lev3], with various meanings. One of its
main uses is to replace (or approximate) a given action on an R-tree by one
which is simpler to analyze while keeping a control over edge stabilizers (see for
instance [GL]).

In this paper we offer what we think is the right definition. It is given in
terms of measured foliations, and our main result (Theorem 0.2) states that there
is a very simple equivalent definition: nongeometric actions are precisely those
actions that can be viewed nontrivially as strong limits (in the sense of Gillet-
Shalen [GS]). We then illustrate the general theory on several types of examples:
simplicial actions, actions with trivial edge stabilizers, abelian actions. . .
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N

Figure 1. Foliated 2-simplices.

The general idea is that an action of a group G on an R-tree 7T is geometric
if and only if it comes from a measured foliation on a finite complex. One can
then try the following definition.

Start with a measured foliation F (with suitable regularity conditions) on
a finite complex X with mZ = G. Lift F to a measured foliation F on the
universal covering T. We associate to F a metric space T(F), the “leaf space
made Hausdorff” [Lev1], as follows. We consider the pseudodistance d(x, y) on b3
defined as the infimum over all paths ~ from x to y of the total mass || = F placed

on v by the transverse measure of F. We define T(f) as the associated metric
space (obtained by identifying x,y if d(x,y) = 0). The space T(F) is an R-tree
[GS] with a natural action of G. We may then say that an action is geometric if
it is obtained in this way.

There are two problems with this definition. First, it may happen that T(F)
is very different from the leaf space of F. For an extreme example, take F to be
a foliation with dense leaves on X = S? (there exist such foliations, with 4 thorns
as singular set: see for instance [FLP], page 217).

This leads to imposing an extra condition that guarantees in particular that
leaves of F are closed: every compact arc transverse to F may be subdivided
into finitely many subintervals that are mapped isometrically into T(F) (compare
[BF1, BF2]). After subdividing ¥ (see Lemma 1.3) one may then assume that ev-
ery edge of % is either tangent to F, or transverse to F and mapped isometrically
into T(F).

Second, the above definition only applies to finitely presented groups, since
G has to be the fundamental group of a finite complex. On the other hand, one
is interested in studying actions of finitely generated groups. We get around this
difficulty by considering normal coverings §: ¥ — X with transformation group
G, where T may fail to be simply connected (compare [BNS]).

Our definition then goes as follows. Consider a triple (Z, p, ), where:

e ¥ is a connected finite simplicial 2-complex, and p is an epimorphism
™ |Z - G.

e F is a measured foliation on X, i.e., a foliation equipped with a nonatomic
transverse measure with full support. Each edge of X is either contained in a leaf
or transverse to F. The foliation induced on any 2-simplex of X is topologically
conjugate to one of the two models pictured on Figure 1, with leaves either
parallel or perpendicular to one side.
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Definition 0.1. An action of G on an R-tree T is geometric if there exists
(Z, p, F) as above such that:

e T is G-equivariantly isometric to T(F), where F is the pullback of F to
the covering X of X associated to p and T(F) is the “leaf space made Hausdorff”
defined above.

e every edge of T that is transverse to F is mapped isometrically into 7(F)
by the canonical map m: T — T(F).

Recall that an action is minimal if there is no proper invariant subtree. As-
suming for simplicity that G is finitely presented (see Section 2 for the general
case), we then have:

THEOREM 0.2. Let T be an R-tree with a minimal action of G.

1. If the action is not geometric, then it is a strong limit of geometric actions of
G on R-trees T,.

2. If the action is geometric, then it may only be a strong limit in a trivial (i.e.
stationary) way.

CoROLLARY 0.3. An action is nongeometric if and only if it is a nontrivial strong
limit.

Roughly speaking, saying that the trees T, converge strongly towards T (in
the sense of [GS]) means that they approximate T in such a way that any finite
subtree of T may be lifted isometrically (and equivariantly with respect to a finite
set in G) to T, for n large enough. See Section 1.1 for the precise definition. In
particular we have (see Theorem 3.7 for the general case of finitely generated
groups):

CoROLLARY 0.4. If a finitely presented group G acts on an R-tree T, then G has
a geometric action on an R-tree T' such that edge stabilizers for T' are subgroups
of edge stabilizers for T.

If G is finitely generated, then either there is a point x € T fixed by all
elements of G, or there is a smallest nonempty invariant subtree Ty, C T ([AB,
CM])). In Section 4 we prove:

THEOREM 0.5. Let T be an R-tree with a geometric action of a finitely generated
group G. If there is no global fixed point, then Tyyy is closed in T and the restriction
of the action to Ty, is geometric.

This was proved in [GL] when G is free. By analogy with [GL], we may ask
the following question (in the situation of Theorem 0.5): if A is a free factor of
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G, acting with no global fixed point, is the minimal subtree of A closed, and is
the restriction of the action of A to this subtree still geometric?

Specializing to simplicial actions, we give a new construction of the Bass-
Serre tree associated to a graph of groups (Section 5) and we prove:

THEOREM 0.6. A minimal simplicial action of a finitely generated group is
geometric if and only if all edge groups are finitely generated.

Geometric actions with abelian length function have been studied in [Lev3]
(it is easily checked that the above definition of a geometric action may be used
in the proof of Theorem 3.1 of [Lev3]). Using work by Bieri-Neumann-Strebel
[BNS], one has for instance:

THEOREM 0.7. [Lev3] Let G be finitely generated. The following conditions are
equivalent:

e Every action of G on R by translations is geometric.

o The commutator subgroup [G, G] is finitely generated.

Since they are associated to finite complexes, geometric actions may be ex-
pected to have strong finiteness properties: the number of orbits of branch points
should be finite (bounded by the number of vertices of X), and the action should
have finite Z-rank (its length function should take its values in a finitely generated
subgroup of R).

These finiteness properties hold if F has the property that the pseudodistance
d(x,y) between any two points x,y € I is realized: d(x, y) = || for some path
~ from x to y. Unfortunately, we can prove this only when the action has trivial
edge stabilizers (using arguments from [GLP2]). We get (see Section 3):

THEOREM 0.8. Let T be an R-tree with a geometric action of a finitely presented
group G. If the action has trivial edge stabilizers, there are finitely many orbits of
branch points and the action has finite Z-rank.

This was proved in [GL] when G is free. Inspired by [GL], Corollary III.3,
we ask:

Question. Suppose G is generated by k elements. Consider a geometric action
of G with trivial edge stabilizers. Is the number of orbits of branch points bounded
by 2k — 2? (This is proved in [GL] for G a free group.)

By the same arguments as in [GL], a positive answer would imply that any
minimal action with trivial edge stabilizers of a finitely presented group has at
most 2k — 2 orbits of branch points, and has Q-rank < 3k — 3.

Though we cannot prove Theorem 0.8 for a general geometric action, we
show (Theorem 3.1) that geometric actions are J-actions in the sense of [Lev2]:
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there are only finitely many distinct closures of orbits of branch points. See
[Lev2], Theorems 1 and 2, for properties of J-actions: topological finiteness of
the quotient space, and absence of exceptional minimal set.

1. Preliminaries. We define an action of a group on a metric space to be
a left isometric action. First we say a few words about quotient spaces. Let N be
a countable group acting on an R-tree T. The space of orbits 7/N has a natural
pseudometric, induced by the metric of 7. Identifying points at pseudo-distance
0in T/N gives a metric space T//7V'

An N-equivariant Lipschitz map T — T’ induces a continuous map 777\/ -
T/'/TV. IfNisa nor/nlal subgroup of a group H acting on T, there is a natural

action of H/N on T/N.
We shall use the following fact:

THEOREM 1.1. [Levl] Let N be a countable group acting on an R-tree T. If N
is generated by its elliptic elements (i.e., elements acting with a fixed point), then
T/N is an R-tree.

1.1. Morphisms, strong limits. We define morphisms as in [MO]. A mor-
phism from a segment / to an R-tree T is a continuous map f: I — T such that /
may be subdivided into finitely many subsegments that f injects isometrically into
T. Let T,T' be R-trees endowed with actions of groups G, G’ respectively. Let
¢: G — G’ be a homomorphism. A morphism from T to T’ isamap f: T — T,
equivariant relative to ¢ (in the sense that f(gx) = ¢(g)f(x)), which induces a
morphism on every segment / C T. Note that a morphism obviously does not
increase distances.

Here is a very useful way to prove that an equivariant map f: T — T’ is
a morphism. Suppose K C T is a subtree such that every segment I C T is
contained in a finite union of images of K under G. If f | K is an isometric
embedding, then f is a morphism.

Let {Gn}nen be a sequence of finitely generated groups with epimorphisms
G, — Gpy1 and G be its direct limit

G =1limG,.

Note that one has epimorphisms 7,,: G, — G, and that if G is finitely presented,
then the sequence is stationary.

We say that a sequence of R-trees T, with actions of G, converges strongly
(see [GS]) to an R-tree T with an action of G = @ G, if there exist surjective
morphisms f,, from T, to T}, (for n < p), and f, from T}, to T, such that f,ofy, = fn,
and furthermore for every n € N and x,y € T, there exists p > n such that the
distance between f,,(x) and f,,(y) in T, equals the distance between f,(x) and
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Figure 2. Subdivision of a foliated 2-simplex.

fo(y) in T. (The definition in [GS] is more general, but the one just given is
sufficient for us.)

If G is finitely presented, we say that the strong convergence of T, to T is
trivial if f,: T, — T is an isometry for n large.

If G is not finitely presented, we have to be more careful; in particular, the
convergence of (T, G,) towards (T, G) should be considered trivial.

Let H, be the kernel of the epimorphism 7,: G, — G. Abstract nonsense

e
gives an isometric action of G ~ G,/H, on the metric space T,,/H, and a natural

—

G-equivariant map T,/H, — T. We say that the strong convergence from T, to
T is trivial if this map is an isometry for n large.

1.2. Foliated 2-complexes, systems of isometries, Imanishi’s theorem. Let
Ay ={(x,y,2) € R} /x+y+z=1;x,y,2 > 0} be the standard 2-simplex.

Definition 1.2. A foliated 2-complex (X, F, i) (or (L, F) or X for short) is

e a connected finite simplicial complex X of dimension less than or equal to
2 (maybe a point or a graph);

e a foliation F, i.e., a decomposition of X into disjoint subsets, called leaves
(whose embedding in X may fail to be proper), such that every edge is either
contained in a leaf or transverse to F, and such that the foliation induced on any 2-
simplex is topologically conjugate to one of the following two types: A,N{z = C}
or Ay N {x —y = C} (see Figure 1);

® a transverse measure (i on every transverse edge, there is a positive reg-
ular Borel measure, with finite total mass, absolutely continuous with respect to
Lebesgue measure, with full support (every open subset has positive measure);
this collection should be invariant under holonomy along the leaves.

A leaf is called singular if it contains a vertex of X, regular otherwise.

LEMMA 1.3. Let (Z, F) be a foliated 2-complex. Let A be a finite subset of the
1-skeleton. There is a subdivision T’ of T such that each a € A is a vertex of ¥/, and
Y/ (equipped with the induced measured foliation) is a foliated 2-complex.

Proof. By induction on the cardinality of A. If A is a point, join it to the
opposite vertex in each 2-simplex containing it, and check the foliation on the
2-simplices thus created (see Figure 2). |
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COROLLARY 1.4. In the second condition of Definition 0.1, it suffices to require
that restrictions of T to transverse edges of X be morphisms. o

As another application, we observe that a surface endowed with a measured
foliation in the sense of [FLP] may be triangulated so as to give a foliated 2-
complex.

As E. Rips pointed out, actions of finitely generated groups on R-trees natu-
rally yield foliated 2-complexes.

A finite R-tree is a compact R-tree which is the convex hull of a finite set.
A finite tree may be degenerate, i.e., consist of only one point.

Let K be a finite subtree of an R-tree T equipped with an action of a finitely
generated group G. Let gy, ..., g¢ be a finite generating system for G. Assuming
that KN gj‘lK is nonempty, we consider the restriction ¢;: KN gj‘lK — gKNK
of the action of g;.

More generally, a system of isometries is a pair X = (K, {¢;j};=1,..x), Where
K is a finite R-tree and each ¢;: A; — B; (called a generator) is an isometry
between nonempty finite subtrees of K.

If X is a system of isometries on a finite R-tree K, we define (as in [GLP1],
Part 1) a foliated 2-complex (2(X), F) (or simply X) associated to X. Start with
the disjoint union of K (foliated by points) and strips A; x [0, 1] (foliated by
{*} x [0,1]). We get X by glueing the strips A; x [0, 1] to K, identifying each
(,0) € A; x {0} with t € A; C K and each (1, 1) € Aj x {1} with ¢;(t) € B; C K.
Using Lemma 1.3, it is easy to subdivide each strip A; x [0, 1] in order to get the
standard models of Figure 1.

We will identify K with its image in X. Fixing a base point in K, we identify
m X with the free group F; on k generators gi,..., g, the generator g; corre-
sponding to the jth strip.

We will use an important general fact about foliated 2-complexes. Given a
foliated 2-complex (Z, F), let (Z*, F*) be the restriction to the complement of
the set of vertices, and let E be the union of leaves of F* that are closed in X*
but not compact. The set E contains no regular leaves, so that its complement in
X* is an open set with finitely many components.

PROPOSITION 1.5. Let U be a component of £* \ E. Either every leaf contained
in U is compact, or every leaf contained in U is dense in U.

Proposition 1.5 relies upon work of Imanishi about foliations [Ima]. The
case of foliated 2-complexes may be deduced from Part 3 of [GLP1]: We may
associate to a foliated 2-complex a system of isometries X in the sense of [GLP1],
on a multi-interval D consisting of the disjoint union of all closed edges of
(the generators of X are given by the holonomy within each 2-simplex).
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Remark 1.6. We may be more precise in the statement of Proposition 1.5.
In the first case, U is a (possibly twisted) family of compact leaves: U (or a
2-sheeted covering of U) is foliated as a product I" x {¢}, with T" a finite graph
and ¢ in an open subinterval of R (as a matter of fact, we may get rid of twisted
families by subdividing X). In the second case U is called a minimal component.
It may be shown that every leaf of F meeting the frontier of U meets U.

1.3. From foliated 2-complexes to R-trees. Let X be a foliated 2-complex.
We consider both the universal covering %, and a normal covering 6: P )
associated to a normal subgroup N C mX. Let T(]-’) and T(F) be the spaces
associated to the lifted foliations F and F as in the introduction.

%:Ecall that T(f’) is an R-tree (see [GS]), and we note that T(F) is equal

to T(f')/N . Applying Theorem 1.1, we get:

ProrosITION 1.7. Let (Z,F) be a foliated 2-complex. Let N be any normal
subgroup of m\ X generated by (free homotopy classes of) loops contained in leaves.
If F is the pullback of F to the covering T of T corresponding to N, then T(F) is
an R-tree (with an action of m;Z/N).

Proof. The hypothesis on N guarantees that N is generated by elements that
act elliptically on the R-tree T(F). [m]

Now suppose (X, F) is associated to a system of isometries (K, {¢;}j=1,..-.x)
as above. The group F; = 7 acts on the R-tree T(]?). Leti: K — T(f) be
the map obtained by choosing a continuous lifting of K to % and applying the
canonical map from X to T(F).

THeEOREM 1.8. ([GL], Part D

1. The map i: K — T(F) is an isometric embedding of K into T(F), and we
identify K and i(K). Every segment of T(F) is contained in the union of finitely
many images of K (under the action of Fy = mX).

2. Let T be an R-tree with an action of Fy. Assume K is isometrically embedded
in T, with gix = pj(x) for j = 1,...,k and x € Aj C K. Then the embedding of K
into T extends uniquely to a morphism from T(f-') toT.

2. Geometric actions and strong limits. An action of a countable group G
on an R-tree T is said to be finitely supported if there is a finite subtree K whose
images under G cover T. Note that a minimal action of a finitely generated group
is finitely supported (see [AB], [Pau]), and that a tree with a finitely supported
action is the union of an increasing sequence of finite trees.

PROPOSITION 2.1. A geometric action of a finitely generated group on an R-tree
is finitely supported.
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Proof. For every edge of X (as in Definition 0.1), fix a lift in X. These lifts
inject isometrically into T = T(F), so that there is a finite subtree K containing
them all. o

The following result relies on a construction suggested by E. Rips.

THEOREM 2.2. Every finitely supported action of a finitely generated group G
on an R-tree T is a strong limit of geometric actions.

Proof. Let g1,...,8 be a system of generators of G and p: F, — G the
corresponding epimorphism. We write T as an increasing union of finite subtrees
K, that meet every orbit, with gj_lK,,ﬂK,, nonempty forj=1,...,k. Asin Section
1.2 we consider the system of isometries Xj, of K, defined by ¢: K,N gj"K,, —
giK» N K, and the associated foliated 2-complex (Z,, F,). Taking basepoints in
K,, recall that we identify all groups 7%, with the free group F; on generators
g1, - - - » gk (these identifications are compatible with the natural inclusions %, —
%, for n < p).

Let N be the kernel of p: Fy — G. Let r = g;'...g" be any element of N.
If we choose n such that K,, contains all points géj . gfr’x (1 £j < r) for some
x € T, then there is a loop in Z,, contained in a leaf of F,, whose free homotopy
class represents the conjugacy class of r.

Define N, as the smallest normal subgroup of mZ, containing all elements
r € N represented by a loop contained in a leaf of F,,. We let G, = mZ,/N,,
and p,: mZ, — G, the quotient map. We see that N is the increasing union of
the subgroups N,, so that G is the direct limit of the sequence G,.

Remark 2.3. If G is finitely presented, then for n large enough N, = N, G, =
G, and the subgroup N C mX, is generated by free homotopy classes of loops
contained in leaves of F,.

Let %, and 3, be  the universal covering and the covering corresponding to
N, respectively. Let F, and F, be the lifted foliations, and T(Fp), T(F,) the
corresponding metric spaces. We know that T(F,) is an R-tree. By Proposition

1.7 the space T(F,) = T(j-'j,) /Ny is an R-tree T,, equipped with an action of G,.

We now proceed to show that the sequence of actions (G,,T,) converges
strongly towards (G, T). N

By Theorem 1.8 the tree T(F,) contains K, as an isometrically embedded
subtree, and every segment in T(F,) is contained in a finite union of images of
K. Furthermore Theorem 1.8 yields a morphism from 7'(F,) to T inducing the
identity on K, (we view T as a tree with an action of Fj, via the epimorphism
p: Fr — G).

This morphism from T(j-':,) to 7 induces a map f, from T, to T = m
Since neither f,; nor the projection p, from T(F,) to T, increases distances, we
deduce first that the restriction of p, to K, is an isometric embedding, so that T,
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contains K, as a subtree. In particular the action of G, on T, satisfies the second
condition of Definition 0.1: it is geometric.

Furthermore f,, is a morphism, since it induces the identity on K,, and every
segment in T, is contained in a finite union of images of K,. Similarly we get
morphisms Jap: Tnw — T, inducing the inclusions K, — K, (n < p). All these
morphisms are surjective because K, meets every orbit (of the action of G, on
T,, and of the action of G on T).

The last thing to check is that the sequence T, converges strongly towards
T. Given x,y € T,, choose p so that K, contains both f,(x) and f,(y). Then the
distance between f,,(x) and f,,(y) in T, equals the distance between f,(x) and
f(y)inT. O

Remark 2.4. We note the following features of this proof:
1. If G is not finitely presented, let H, be the kernel of the natural epimor-

phism 7,: G, — G. If the metric space m is an R-tree, then the action of G

on T,/H, is geometric (same proof as for the action of G, on T,).

2. We will show at the end of Section 3 that edge stabilizers of T,, are mapped
injectively into G by 7,. In particular (G,, T,,) has trivial edge stabilizers if (G, T)
does.

3. If G is not finitely presented, view it as the direct limit of a sequence of
finitely presented groups G, obtained as quotients of Fy by the first n relations
in a presentation of G. We claim that every finitely supported action (G,T) is a
strong limit of geometric actions (G, T.): in the construction above, we simply
choose K, so that the first n relations in the presentation of G are represented by
loops contained in leaves of F,, and we let T, be the metric space associated to
the lift of F, to the G)-covering of Z,.

THEOREM 2.5. A geometric action of a finitely generated group.G on an R-tree
is not a nontrivial strong limit of actions (in the sense of Section 1.1).

Proof. Suppose T is an R-tree with a geometric action of G. We thus have a
foliated 2-complex (T, F), with a covering §: £ — X, as in Definition 0.1. The
foliation defines a pseudodistance d on X and T is the associated metric space.

If e is an edge of X transverse to the foliation, the second condition in
Definition 0.1 implies that the restriction of d to e is just the distance defined by
the transverse measure on e. If e is contained in a leaf, the restriction of d to e
is identically 0. For convenience, we shall say that a map f from a subset A of
T to a metric space (X,8) does not increase distances (resp. is an isometry) if
5(F(x),f(y) < d(x,y) (resp. 6(f(x),f(y)) = d(x,y)) for x,y € A. In particular the
canonical map 7: £ — T is an isometry!

We first prove the theorem when G is finitely presented. We assume that a
sequence of trees T,, each with an action of G, converges strongly to T, and we
want to show that the morphism f,: T, — T is an isometry for n large. Since f,
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does not increase distances and 7: £ — T is an isometry, it suffices to construct
(for n large) a G-equivariant map ¢,: £ — T, which does not increase distances
and is a lift of 7 (i.e. f,, 0 ¢, = 7):

T,
g L
IR

First we construct ¢, over the 1-skeleton fl, as an equivariant lift of 7 such .
that the restriction of ¢, to every edge is an isometry. Note that ¢/, = f,v © ¢n
has the same properties for n’ > n.

Fix a maximal tree L in the 1-skeleton of Z. Let L be a component of the
preimage #~!(L) C X. By the second condition in Definition 0.1, the image
m(L) C T is a finite tree.

Since the convergence of T, towards T is strong, we can construct an iso-
metric section A, of f, over w(L) for p large, as follows. For each vertex v of
m(L), choose an arbitrary v; € i 1(v). For p large, the distance between f1,(v1)
and fi,(v}) in T, equals the distance between v and ¢/ in T for every couple of
vertices v, ¢/, and there is a section Ap of fp 'sending each v to fi,(v1).

We define ¢, on L as A, o, and we extend it to 6~ (L) equivariantly.

Now let € = [a, b] be an edge of T above an edge ¢ ¢ L. For n > p large
enough, the distance between f,, © ¢p(a) and fp, © ¢pp(b) in T, equals d(a, b). We
may then extend the definition of @, = f,n 0 ¢, first to &, and then to §~!(e) using
equivariance. Repeating this operation finitely many times, we get the desired lift
over the 1-skeleton. '

Finally, let A be a 2-simplex of X. The map ¢, is already defined on the
boundary of A, and it is an isometry on each edge. Since T, is an R-tree, the
image of the edges is determined by that of the vertices. It follows that two points
of the boundary of A that lie on the same leaf of F |, have the same image in
T,. This gives a canonical way to extend ¢, to A.

Doing this for every 2-simplex, we obtain an equivariant lift ¢, of © over the
whole of X. It has the property that, for any path v contained in a 2-simplex, the
total mass placed on <y by the transverse measure equals the length of ¢,(v) in T,.
Since any path may be approximated by a finite union of paths, each contained in
a simplex, this implies that ¢, does not increase distances, completing the proof
when G is finitely presented.

The proof is basically the same in the general case, but now 7T, is equipped
with an action of a group G,. Rec%t H, denotes the kernel of the epimorphism
Tn: Gn — G. The metric space T,/H, has an action of G, but we do not know
that it is an R-tree. We want to show that it is G-equivariantly isometric to 7,
and /we\do so by constructing an equivariant, distance-nonincreasing, lift ¢, of 7
to T,,/Hy:
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(T, Gn)
7
(Tp/Hn,G) | fa
/N

z LN T,G).

The construction of ¢, on the 1-skeleton is the same as before: we did not
use the fact that T, is a tree, but only the existence of sections of f, over finite

subtrees of T. Such sections exist a fortiori for the map from 7,,/H, to T: simply

compose a section of f, with the projection from T, to T,,/H,.

Let A/C\f be a 2-simplex as above. We have a map 6, from the boundary
of A to T,/H,, and we wish to extend it to A. This is done by projecting &, to
T, lifting it to T, (increasing n/if\needed), extending it to a map from A to T,
and finally projecting it onto 7, /H,.

This gives a way to define ¢, on every 2-simplex in the same G-orbit
as A. Since there are finitely ‘many such orbits, we get the required distance-
nonincreasing map from X to T,/H,. O

Let us now combine Theorems 2.2 and 2.5. A minimal action of G is finitely
supported. It is a strong limit of geometric actions (of G if G is finitely presented)
by Theorem 2.2. If the action is nongeometric, thisgong limit is nontrivial (in
the sense of Section 1.1): if it were, then T = T,/H, would be geometric by
Remark 2.4. We have proved:

THEOREM 2.6. Let T be an R-tree with a minimal action of a finitely generated
group G.

1. If the action is not geometric, then it is a nontrivial strong limit of geometric
actions (of G if G is finitely presented).

2. If the action is geometric, then it may only be a strong limit in a trivial way.

COROLLARY 2.7. Anaction is nongeometric if and only if it is a nontrivial strong
limit (in the sense of Section 1.1).

3. Standard forms for geometric actions, and finiteness results. Let T
be an R-tree with an action of a group G. Recall that a branch point of T is a
point x € T such that T\ {x} has at least 3 components. If x and x’ are branch
points, the orbit closures Gx, Gx’ are disjoint or equal. As in [Lev2], we say that
the action is a J-action if there are only finitely many distinct orbit closures of
branch points. A minimal J-action of a finitely generated group has the properties
that the quotient space, made Hausdorff, is homeomorphic to a finite graph, and
the closure of an orbit cannot meet a segment in a Cantor set (see [Lev2]).
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Our first finiteness result is:
THEOREM 3.1. A geometric action of a finitely generated group is a J-action.

Proof. Let (X, F) be as in Definition 0.1. Let a be a point of £ whose image
in X belongs to a compact regular leaf. By Remark 1.6, this point a has a neigh-
borhood foliated as a product L x {x}. This implies that its image in T cannot
be a branch point.

Now there exist finitely many leaves ¢,...,£, of F such that every leaf
either is compact and regular, or is contained in the closure of some ¢;: we
simply take every singular leaf and one leaf in each minimal component. Lifting
to T and projecting to T, we find finitely many orbits Gx; (i = 1,...,p) such
that each branch point of T belongs to some Gx;. This shows that the action is a
J-action. m|

Using a general foliated 2-complex in Definition 0.1 might cause difficulties
for applications. But Theorems 2.2 and 2.5 imply that a geometric action may be
represented by a very special foliated 2-complex.

Consider the sequence of /tr'ee\s T, constructed in the proof of Theorem 2.2.
If T is geometric, then T = T,/H, for n large: In other words, T is the space
of leaves (made Hausdorff) of the foliation induced on the covering X, of X,
associated to the epimorphism p: 7%, — G. Furthermore transverse edges of
%, isometrically embed into T. We get:

PROPOSITION 3.2. Let G be a finitely generated group acting on an R-tree T.
Let g1, .. .,8k be a finite generating system for G. If the action is geometric, then
in Definition 0.1 we may take X = X(X), where X = (K, {p;j}j=1,...x) is the system of
isometries associated to a large enough finite subtree K C T as in Section 1.2. O

We shall often represent a geometric action in this way. If G is finitely
presented, we may also assume that N = Ker p is normally generated by free
homotopy classes of loops contained in leaves of £ (Remark 2.3). We will call
such a description of a geometric action a standard form.

Remark 3.3. When G is finitely presented, our definition of a geometric ac-
tion is closely related to that in [BF2]. Indeed, suppose that the action is geometric
in standard form. The subgroup N is normally generated by a finite number of
loops contained in leaves of Z. One may then replace T by another foliated 2-
complex X', by glueing discs along these loops. Such a disc is understood to be
part of a leaf. The tree T is then the leaf space made Hausdorff for the lift of the
foliation to the universal covering of X'.

Our next goal will be to prove Theorem 0.8.

Let G be a finitely generated group, and T an R-tree with a geometric action
of G in standard form. In other words, we assume that T = T(F), where (Z, F)
is the foliated 2-complex associated to a system of isometries X = (K, {¢;: Aj —
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Bj}j=1,..x) and F is the lift of F to a G-covering 0: T — X. When needed, we
will view K as a subtree of 7.

If A C I, let sat(A) be the union of all leaves meeting A. Let Ci,...,Cp, ...
be the components of 6~1(K). Since X is connected, we may order them in such
a way that I,, = C,, Nsat(C, U --- U Cp—1) is nonempty for all m.

LEMMA 3.4. Assume that T is generated by free homotopy classes of loops
contained in leaves of F. Then the sets I, are connected, and the natural map from
the set of leaves of F to T is one-to-one outside of a countable set.

If the sets I, are closed, then T is obtained from C by successively glueing Cp,
isometrically along I,,.

Note that the assumption on 7 Z involves no loss of generality if G is finitely
presented (see Remark 2.3). It is satisfied by the actions (G, T,,) constructed in
the proof of Theorem 2.2.

Proof. We argue as in Part 3 of [GLP2]. Say that a path v: [0, 1] — T (or by
abuse its image) is taur if y~'(L) is connected for every leaf L of F. Any path
contained in some C,, is taut. Since 7Z is generated by free homotopy classes
of loops contained in leaves, the proof of Lemma 3.3 of [GLP2] applies: If a
path vy between x,y € X is taut, then |y|z = d(x,y); if ¥’ is another path between x
and y, then vy is contained in sat(y'). The same argument as in [GLP2] (proof of
Lemma 3.5) then shows that I, is connected.

First assume that the sets I,,, are closed. Arguing again as in Part 3 of [GLP2],
we see that any two points of £ may be joined by a taut path. The canonical map
from T to T maps each C,, isometrically, and T may be obtained from C; by
successively glueing C,, isometrically along I,.

The key fact in this is that T is precisely the space of leaves of F; the natural
mapping taking a leaf of F to its image in T is one-to-one.

Without the assumption that the sets I, are closed, it is conceivable that a
leaf containing an endpoint of some /,, be identified with another leaf. But this
may affect only countably many leaves. In other words, we have proved that the
map taking a leaf of F to its image in T is one-to-one outside of a countable
set. a

LEMMA 3.5. Ifthe action (G, T) has trivial edge stabilizers, then I, is closed.

Proof. Assume it is not. As in [GLP2] (proof of Lemma 3.5), we find 7 >0
and isometric maps p: [0,7'] — C,, and §: [0,7'] — C; (for some i < m) such
that p(r) is in the same leaf as g(¢) if and only if ¢ > 0.

Letp=6fopand g =0o0q. By the ‘segment closed” property ([GLP2],
Theorem 2.3), there exists a word cp f’ defined on some nondegenerate
segment I = p([0,7"]) and sending it to J q([0,7""]) (Theorem 2.3 of [GLP2] is
stated for a system of isometries on a multi-interval; it also applies to a system of
isometries on a finite tree K, as may be seen by splitting K into a multi-interval
as in [GLP1], Part 2).
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Geometrically, we get a “band of leaves” joining I to J via ;" (D), ¢;"" i (I)
etc. Lift this band to T with origin p([0,"]). It ends at some component C; = gC;.
Observe that g € G is nontrivial, since otherwise P(0) and g(0) would be on the
same leaf. ' '

Now choose a point g(fo) belonging to a regular leaf L of F with 0 < ty < 1",
and a path v, C L from g(#p) to p(tp). Push this path onto nearby leaves, obtaining
a continuous family of paths v, contained in leaves L;, joining g(¢) to p(¢) for
|t — 12| < €. We see that g fixes the image of g([to — €, o +¢]) in T, contradicting
triviality of edge stabilizers. O

THEOREM 3.6. Let T be an R-tree witha geometric action of a finitely presented
group G. If the action has trivial edge stabilizers, there are finitely many orbits of
branch points and the action has finite Z-rank.

Proof. By Lemmas 3.5 and 3.4, the tree T may be obtained from C; (which
we identify with K) by successively glueing C,, isometrically along I,,.

A branch point of T thus belongs to the same orbit as a vertex of K or an
endpoint of some I,,. Let B C T be the union of orbits containing a vertex of K,
or a vertex of some domain A; (1 < j < k). Geometrically, B is the image in T
of all singular leaves of F. The image in T of an endpoint of I,, belongs to B:
otherwise one could extend I, past the point. It follows that every branch point
belongs to B, the union of finitely many orbits.

To see that the action has finite Z-rank, we simply note that T is a A-tree,
where A is the subgroup of R generated by all distances between vertices of K,
Ai,...,Ax, By,...,By. O

We now prove:

THEOREM 3.7. If a finitely generated group G acts on an R-tree T, then G is
the direct limit of finitely generated groups G, acting geometrically on R-trees T,
such that the edge stabilizers for T, are subgroups of edge stabilizers for T. If G is
finitely presented, then we may take G = G,.

Proof. Let us consider the geometric actions (G,, T,,) constructed in the proof
of Theorem 2.2. Recall that G is the direct limit of the sequence G,. If G is
finitely presented, then G, = G for n big enough (Remark 2.3), and the result is
clear since there is a G-equivariant morphism from 7, to 7.

If G is not finitely presented, we apply Lemma 3.4 to the action (G,, T,,) (it
does satisfy the assumption that 7%, is generated by free homotopy classes of
loops contained in leaves of F,).

Suppose that h € G, fixes a nondegenerate segment in T,,. Then it fixes some
x € T, which is the image of only one leaf of F,. In geometric terms, this means
that in X, there is a loop contained in a leaf of F,, whose homotopy class is
mapped to (a conjugate of) h by the epimorphism p,: m X, — G, (in fact there
is a whole band of leaves representing 4, but we don’t need this).
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Thus A is the image of a word r € F}, that is represented by a loop in a leaf
of F,. If h is mapped to the identity in G by the canonical map 7,: G, — G,
then r belongs to N, hence to N,, and k4 is the identity in G,. We have proved
that 7,,: G, — G is injective on each edge stabilizer. The result follows. m|

4. Minimal subtrees of geometric actions. We start with a very general
fact.

PRrROPOSITION 4.1. Let T be an R-tree with an action of a group G. Let K C T be
a subtree such that every closed segment may be covered by finitely many images
h;K. The mapping Ty — A = ToN K defines a bijection between the set of nonempty
invariant subtrees Ty C T, and the set of nonempty subtrees A C K such that:

1. Ifa€ Aandga€ K, then ga € A.
2. Theset{h€ G| hANAF#0} generates G.

The inverse mapping is given by Ty = UgeGgA. If K is closed, then Ty is closed if
and only if A is closed.

Proof. Let Ty be nonempty invariant. Since K meets every orbit, the set
A = To N K satisfies Top = Ugeg gA. It clearly satisfies condition 1. To show
that A satisfies 2, fix a € A and g € G. Cover the segment [a, ga] by finitely
many images g;K, with g; = 1g, g, = g, and &K N gi+1K N [a, ga] # 0. Setting
h; = gi'lgm we have g =h; ... h,_; with AN KA # 0.

Conversely, take A C K satisfying 1 and 2. Let To = Ugeg gA. This is a
subtree because of condition 2, and 7o N K = A because of condition 1.

This shows that we have two inverse bijections. There remains to show that
Ty is closed if K and A are. If Ty is not closed, there exists a segment [a, b]
with [a, b] N Ty = (a, b]. Changing b if necessary, we may assume that [a, b] is
contained in some gK. This means that A is not closed. O

THEOREM 4.2. Let T be an R-tree with a geometric action of a finitely generated
group G. If there is no global fixed point, then the minimal subtree Ty is closed
in T, and the restriction of the action to Ty, is geometric.

Proof. As mentioned in Proposition 3.2, we may assume that the geometric
action is in standard form, that is, T = T(F), where (X, F) is the foliated 2-
complex associated to a system of isometries X = (K, {¢j: Aj — Bj}j=1,...x) and
F is the lift of F to a G-covering §: £ — X. We view K both as a subcomplex
of £ and a closed subtree of 7. We may further assume K N giK N Tiyin ¥ 0
G=1,...,k).

Let Apin = Tmin N K. We want to show that it is closed. A subset of X is
F-saturated if it contains the leaf through any of its points.

Since Amin satisfies condition 1 of Proposition 4.1, it is the intersection with
K of an F-saturated subset X, C X. Let U be a minimal component of F* (as
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defined in Section 1.2). By Remark 1.6 every leaf of F meeting U meets U. It
follows that either T, is disjoint from U, or Xy, contains U.

If @ € Amin \Amin, there is then a segment (a, b] C Ap, meeting only compact
leaves of F. The image of (a,b] in T is a segment (x, y] containing no branch
point, with [x, y] N Tin = (x, y]. This contradicts the minimality of Tiyi,: the union
of all orbits contained in T, and disjoint from (x, y] is a proper invariant subtree.
We have thus proved that T, is closed.

Now consider Xy, C XZ. It is compact and F-saturated. The hypothesis
KNgijKNTyin # 0 implies that the inclusion Zpi, — X is a homotopy equivalence.
(Recall indeed that X collapses to a bouquet of circles, K collapsing to the vertex
and each strip A; x [0, 1] to one of the circles. Since K N g;K N Ty is connected
and nonempty, SO is Znyis.) In fact there is a natural strong deformation retraction
from Z to Zp,;,. This retraction does not increase distances, in the following sense:
If a path y C X joins two points of py, it is homotopic to a path v/ C Ty, such
that |y'| < |y|#. This implies that Tp, is geometric: it is isometric to T(Fmin),
where F, is the pullback by 6 of the restriction of F to Zpin. m]

5. Geometric simplicial actions. Let us first give an alternative construc-
tion of the Bass-Serre tree (see [Ser, SW]) of a graph of groups.

Suppose G is the fundamental group of a graph of groups G, with underlying
graph I, edge groups G,, and vertex groups G, (we consider edges as unoriented).
For every edge group G,, let S, be a set of generators and F, be the free group
on S,. For every vertex v, choose a set S, of generators of G, which contains
the disjoint union of the (images by the monomorphisms of G of the) sets S,,
for e adjacent to v (it should contain two copies of S, if e is a loop). Let F, be
the free group on S,. If e is adjacent to v, the monomorphism G, — G, fits in a
natural commutative diagram

Fp — F,

! !

Ge _— GU‘

For every vertex v (resp. edge e), let B, (resp. B,) be a bouquet of circles
indexed by S, (resp. S.). Let (X = Zg, F) be the foliated 2-complex obtained
as follows (after a suitable triangulation, see Lemma 1.3). For every edge e,
take B, x [0, 1] foliated by B, x {*}. If v and w are the endpoints of e, glue
B. x {0} C B, x [0, 1] to the sub-bouquet of circles of B, corresponding to the
generators of S,, and glue similarly B, x {1} to B,. The leaves of F are the
bouquets of circles B,, and the sets B, x {t} for t € (0, 1).

The group m X is the fundamental group of the graph of groups with un-
derlying graph TI', edge groups F,, and vertex groups F,. The epimorphisms
pe: Fe — G, and p,: F, — G, induce an epimorphism p: mX — G.
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Let f_be the covering of X associated to p, and F the lifted foliation. The
space T(F) is endowed with the natural action of G.

PROPOSITION 5.1. T(F) is the Bass-Serre tree of G.

Proof. The kernel of p is normally generated by elements belonging to the
kernels of the epimorphisms p,. These elements are represented geometrically by
loops in the leaves B, of F. According to Proposition 1.7, the space T(¥) is an
R-tree.

Because of the product structure of F in each piece B, x (0, 1), this tree is
simplicial. The quotient of T(F) by the action of G is T, the leaf space of F.

The product structure also implies that the pseudodistance d(x,y) between
x,y € T is 0 if and only if x,y belong to the same leaf. This means that, up to
conjugacy, stabilizers of edges (resp. vertices) of T(F) are images in G of the
fundamental groups of the leaves B, (resp. B,) of F, that is G, (resp. G,).

The result now follows by the characteristic property of the Bass-Serre
tree. O

In what follows, we consider a finitely - generated group G acting on a tree
T. We assume that the action is simplicial (7 is a simplicial tree, with every
edge of length one) and minimal (finitely supported would suffice). Let G be the
associated graph of groups.

THEOREM 5.2. The minimal simplicial action (T, G) is geometric if and only if
every edge group is finitely generated.

Remark 5.3. (1) Since G = m§ is finitely generated, finite generation of edge
groups implies finite generation of vertex groups (see [Coh] p. 218).

(2) A finitely generated group may be the fundamental group of a graph
of groups with nonfinitely generated edge and vertex groups. For instance, the
free group of rank 2 on generators ao,? has the presentation (z, {a;}ieN; ais1 =
t~'a;t) corresponding to an HNN extension of the free group with countable basis

({ai}ien).

Proof. First assume that the action is geometric, associated to (Z, p, ) as in
Definition 0.1. Since orbits in T are discrete and transverse edges of T isometri-
cally inject into 7, all leaves of F are compact.

Using Remark 1.6, we see that the pseudodistance d(x,y) between any two
points x, y € X is realized by a path. In particular d(x, y) = 0 if and only if x, y are
in the same leaf of F. Thus the stabilizer of any point in T is finitely generated:
it is obtained by mapping the fundamental group of some leaf of F into mZ,
and then into G by p. Since the stabilizer of an edge is the stabilizer of any of
its points (except maybe its midpoint), edge groups also are finitely generated.

Conversely, assume finite generation of edge groups (hence also of vertex
groups by Remark 5.3). Then the 2-complex Zg constructed at the beginning of
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the section may be taken to be a finite complex. This implies that the correspond-
ing action of G is geometric.

We sketch another proof, based on Theorem 2.6. For simplicity we assume
that G is finitely presented. We suppose that T is a strong limit of R-trees T}, each
equipped with an action of G. We show that this limit is trivial by constructing
an equivariant section p: T — T, for n large. Arguments are similar to those
used in the proof of Theorem 2.5. Finite generation of vertex groups allows us
to construct ¢ over the 0-skeleton, and finite generation of edge groups allows
us to extend ¢ to the whole of 7. O

LABORATOIRE EMILE PICARD UMR 5580, UNIVERSITE TOULOUSE III, 118 ROUTE DE
NARBONNE, 31062 TOULOUSE CEDEX 4, FRANCE
Electronic mail: LEVITT@PICARD.UPS-TLSE.FR

UNITE DE MATHEMATIQUES C.N.R.S. UMR 128, ECOLE NORMALE SUPERIEURE DE LYON,
46 ALLEE D’'ITALIE, 69364 LYON CEDEX 07, FRANCE
Electronic mail: PAULIN@UMPA.ENS-LYON.FR

REFERENCES

[AB]  R. Alperin and H. Bass, Length functions of group actions on A-trees, Combinatorial Group Theory
and Topology, Ann. of Math. Stud., vol. 111 (S. Gersten and J. Stallings, eds.), Princeton
Univ. Press, 1987, pp. 265-378.

[BF1 =+ M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), 287-321.

[BF2] ____ Outer limits, preprint, 1992.

[BNS] R. Bieri, W. D. Neumann, and R. Strebel, A geometric invariant of discrete groups, Invent. Math. 90
(1987), 451-477.

[Coh] D. E. Cohen, Combinatorial Group Theory: a Topological Approach, London Math. Soc. Stud. Texts,
vol. 14, Cambridge Univ. Press, 1989.

[CM] M. Culler and J. W. Morgan, Group actions on R-trees, Proc. Lond. Math. Soc. 55 (1987), 571-604.

[FLP] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66—67
(1979).

[GL] D. Gaboriau and G. Levitt, The rank of actions on R-trees, Ann. Sci. Ecole Norm. Sup. (4) 28 (1995),
549-570.

[GLP1] D. Gaboriau, G. Levitt, and F. Paulin, Pseudogroups of isometries of R and Rips’ theorem on free
actions on R-trees, Israel J. Math. 87 (1994), 403—428.

[GLP2] _________, Pseudogroups of isometries of R: reconstruction of free actions on R-trees, Ergodic
Theory Dynamical Systems 15 (1995), 1-20.

[GS]  H. Gillet and P. Shalen, Dendrology of groups in low Q-ranks, J. Differential Geom. 32 (1990),
605-712.

[GSS] H. Gillet, P. Shalen, and R. Skora, Simplicial approximation and low-rank trees, Comment. Math.
Helv. 66 (1991), 521-540.

[Ima]  H. Imanishi, On codimension one foliations defined by closed one forms with singularities, J. Math.
Kvoto Univ. 19 (1979), 285-291.

[Levl] G. Levitt, Constructing free actions on R-trees, Duke Math. J. 69 (1993), 615-633.

[Lev2] — Graphs of actions on R-trees, Comment. Math. Helv. 69 (1994), 28-38.



102

[Lev3]
[Mor]
MO]

[(MS1]
(MS2]
[Ota]

[Pau]
[SW]

[Ser]
[Shal]

[Sha2]

GILBERT LEVITT AND FREDERIC PAULIN

R-trees and the Bieri-Neumann-Strebel invariant, Publ. Mat. 38 (1994), 195-202.

J. Morgan, A-trees and their applications, Bull. Amer. Math. Soc. 26 (1992), 87-112.

J. Morgan and J.-P. Otal, Relative growth rate of closed geodesics on a surface under varying hyper-
bolic structures, Comment. Math. Helv. 68 (1993), 171-208.

J. Morgan and P. Shalen, Valuations, trees and degeneration of hyperbolic structures II, III, Ann. of
Math. 122 (1988), 403-519.

Free actions of surface groups on R-trees, Topology 30 (1991), 143-154.

J.-P. Otal, Le théoréme d’hyperbolisation des variétés fibrées, Astérisque 235 (1996).

F. Paulin, The Gromov topology on R-trees, Topology Appl. 32 (1989), 197-221.

G. P. Scott and C. T. C. Wall, Topological methods in group theory, Homological Group Theory,
Lond. Math. Soc. Lecture Note Ser., vol. 36 (C. T. C. Wall, ed.), Cambridge Univ. Press,
1979, pp. 137-203.

J.-P. Serre, Arbres, amalgames, SL;, Astérisque 46 (1983).

P. Shalen, Dendrology of groups: an introduction, Essays in Group Theory, Math. Sci. Res. Inst. Publ.,
vol. 8 (S. M. Gersten, ed.), Springer-Verlag, 1987, New York, pp. 265-319.

Dendrology and its applications, Group Theory from a Geometrical Viewpoint (E. Ghys,

A. Haefliger, and A. Verjovsky, eds.), World Scientific, Teaneck, NJ, 1991, pp. 543-616.

[Sko =+ R. Skora, Splittings of surfaces, J. Amer. Math. Soc. 9 (1996), 605-616.



	Article Contents
	p. 83
	p. 84
	p. 85
	p. 86
	p. 87
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92
	p. 93
	p. 94
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100
	p. 101
	p. 102

	Issue Table of Contents
	American Journal of Mathematics, Vol. 119, No. 1 (Feb., 1997), pp. 1-250
	Front Matter
	On Cartan's Theorem and Cartan's Conjecture [pp. 1-17]
	Unimodular Invariants of Totally Real Tori in [pp. 19-54]
	Complete Nonorientable Minimal Surfaces with the Highest Symmetry Group [pp. 55-81]
	Geometric Group Actions on Trees [pp. 83-102]
	On the Topological Cyclic Homology of the Integers [pp. 103-125]
	Fundamental Groups of Complements to Singular Plane Curves [pp. 127-157]
	F-Rational Rings Have Rational Singularities [pp. 159-180]
	Siegel Automorphic Form Corrections of Some Lorentzian Kac-Moody Lie Algebras [pp. 181-224]
	Hecke Algebras and Harmonic Analysis on p-Adic Groups [pp. 225-249]
	Back Matter



