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ABSTRACT 

We give a proof  of  Rips '  t h e o r e m  t h a t  a finitely genera ted  group ac t ing  

freely on an  R-tree is a free p roduc t  of free abel ian groups and  surface 

groups,  us ing m e t h o d s  of dynamica l  s y s t e m s  and  measu red  foliations. 

An R-tree is an arcwise connected metric space in which every arc is isometric 

to an interval of R. See for instance [Shal, Sha2, Morl] for historical remarks, 

references and motivations. This paper contains a proof of the following result, 

formerly known as the Morgan-Shalen conjecture [MS2]: 

THEOREM 0.1 ( E .  Rips): Let G be a finitely generated group acting freely on 

an R-tree. Then G is a free product of free abelian groups and surface groups. 

More generally, we shall prove: 

THEOREM 0.2: Let G be a finitely generated group acting on an R-tree T. Let 

Ge be the (normal) subgroup of G generated by all etements acting with a fixed 

point (elliptic elements). Then G/Ge is a free product of free abelian groups and 

surface groups. 
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There is a restriction on the groups that may occur in Theorem 0.1: the 

fundamental group of a closed non-orientable surface of Euler characteristic > 

- 1  does not act freely [MS2]. This restriction does not exist in Theorem 0.2. 

For instance, the example in [AY] leads to an action with G/G~ ~_ Z/2Z,  the 

fundamental group of a projective plane (see [Lev4], example 5, p. 616). 

It is shown in [Lev4] that, given an action of G, there exists a canonical normal 

subgroup Ho C G such that the quotient space T/Ho, made Hausdorff, is an 
h A 

R-tree T/Ho, and the natural action of G/Ho on T/Ho is free. Theorem 0.2 

leads to a finite procedure for finding H0: consider the action of G/G~ on T/G~ 
(an R-tree by [Lev4], Theorem 2), divide G/G~ by the subgroup generated by 

elliptic elements, and iterate. This process stops after finitely many steps (see 

Lemma 2.2). 

Fix the finitely generated group G. Consider the compact space PLF(G) con- 

sisting of (projectivized) translation length functions (see [CM]). It is asked in 

[Lev4] whether G/Ho is a free product of free abelian groups for a generic ele- 

ment of PLF(G) (in the sense of Baire category). More generally, one may ask 

("generic Lyndon conjecture"): is it true that, for a generic element of PLF(G),  

the groups Ho and G~ are equal, and G/Ge is a free product of free abelian 

groups? 

We now sketch the proof of Theorem 0.1 (the proof of Theorem 0.2 is similar). 

We will also mention related results, to be found in [GLP2]. Our proof was 

inspired by the one Rips sketched at the Isle of Thorns conference in july 1991 

(see [Mor2], [BF]), but it is different in several aspects. In particular, Rips uses 

a combinatorial complexity introduced by Makanin [Mak] and Razborov [Raz]. 

We rely instead on ideas developed by Imanishi and Levitt lima, Levl, Lev2] in 

the context of foliations. 

So let G act freely on T (for simplicity, we assume here that G is finitely 

presented). Let (~fl , . . . ,~p} be a system of generators of G. Let K C T be a 

finite subtree. Each ~/i gives rise to a (partially defined) isometry gi: K n'y~-lK 

"hK N K. 

If K is large enough, then G may be read off from the dynamical system 

T = (K, {gi}): one gets a presentation of G in terms of the generators ~/~ by 

taking as relations all words %~1...~/~1 such that there exists x E K with 

+1 (staying in K). g ~ l  o . . .  o g ~  (x )  = x 

This leads to an important idea of Rips': since Theorem 0.1 is about the group 
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G, not about the action, we may forget about T and concentrate on T; the loss 

of dynamical information involved in this process is not important if one only 

wants to prove Theorem 0.1. In [GLP2], we associate to T a free action of G, 

and show that  this action converges (strongly in the sense of Gillet-Shalen [GS]) 

to the original one when K grows to exhaust T. 

A simple manipulation allows us to replace T by our real object of study: 

a system X consisting of a finite disjoint union D of compact subintervals of 

R, together with a finite number of partially defined isometries ~j: Aj --* Bj, 

where each base  Aj, Bj is a compact subinterval of D (for simplicity, we assume 

here that  every component of D and every base have positive length). One may 

associate a group G(X) to a system X (either by giving generators and relations, 

as before, or by using a foliated 2-complex ~(X)),  and thus recover G. Our task 

then is to determine G(X). 

Consider the orbits of X (two points x, y E D belong to the same orbit if some 

word in the generators ~j and their inverses takes x to y). 

The system X splits up canonically into finitely many pieces (Theorem 3.1). 

On each piece, either every orbit is finite or every orbit is dense. This follows 

from a theorem about singular measured foliations proved by Imanishi lima] 

in 1979 (we provide a direct proof, based on the appendix of [AL]). Imanishi's 

theorem was rediscovered, in the slightly generalized context of laminations, by 

Morgan-Shalen [MS1]. 

This dynamical decomposition of X corresponds to a decomposition of G(X) 
as a free product (Proposition 3.5). Finite orbits are easy to a~alyze (G(X) is 

free if every orbit is finite, see Corollary 3.7), so that we assume from now on 

that  X is min imal :  every orbit is dense. 

For t > 0 small, we define X_t = (D, {~-t}) as follows: if the domain of ~j is 

Aj = [aj, bj], then ~ - t  is the restriction of ~j to [aj + t, bj - t]. 

We now have the following dichotomy (cf. [Levl], lemme III.5): either every 

orbit of X_t is finite, or X is h o m o g e n e o u s  (Proposition 4.1). By X homoge- 

neous, we mean that  there exists a finitely generated dense subgroup P C R such 

that  two points x, y in the same component of D belong to the same orbit if and 

only if x - y E P (there is another type of homogeneous system, which we do not 

mention here). If X is homogeneous, it is easy to show that  G(X) is isomorphic 

to P, hence free abelian (Proposition 4.2). 

Define G (X) as the direct limit of G(X-t) as t goes to 0 (see Section 1). It is 



406 D. GABORIAU ET AL. Isr. J. Math. 

equal to G(X) for generic X (the space of systems X with k generators embeds 

naturally into R 4k, compare [Lev3]). At this point, it is easy to show (using 

an argument similar to Lemma 2.2 below) that G (X) is a free product of free 

abelian groups (when all maps ~j are orientation-preserving, this is essentially 

th~or~me 1 of [Lev2]; the proof of [Lev2] extends to the general case [Gus]). Of 

course we need to compute G(X) for all X, so that we go on. 

We say that  the generators ~j are i n d e p e n d e n t  if the following holds: if a 
+ t  :i:l nontrivial reduced word ~1 o . . .  o ~ ,  has a fixed point, then its domain consists 

only of that point. 

Assuming that X is minimal but not homogeneous, we will show, using Propo- 

sition 4.1, how to replace X by an "equivalent" system Y with independent 

generators (Proposition 5.1). Generalizing the equivalence of pseudogroups in- 

troduced by Haefliger [Hael, Hae2], we take some extra time in [GLP2] to define 

what it means for systems X, Y to be equivalent. Equivalence implies in partic- 

ular that  the associated groups are isomorphic. 

The quest for independent generators was initiated in [Lev2], thdor~me 5, see 

also [Rim2]. The optimal result is due to Gaboriau [Gab]: if X is as above, one 

may replace each ~j by its restriction to a closed (possibly empty) subinterval of 

A j, so as to get independent generators for a system having the same orbits as 

X. Note that this process does not increase the number of generators. 

We assume from now on that X is minimal and that the generators ~j are 

independent. Using Proposition 4.1, we prove that the sum of the lengths of the 

intervals Aj is equal to the total length olD (Proposition 6.1). This is a special 

case of a much more general result, see [Lev3], cor. II.5 and [Lev5]. Involved here 

is the amenability of the equivalence relation on D whose classes are the orbits 

of X. 

First suppose that every x E D belongs to at least two bases. Then all but 

finitely many points belong to exactly two bases, and we say that X is an 

in terva l  exchange .  Even if D is connected, this is a generalization of the 

usual notion [Kea], as in [DN]. For one thing, some of the maps ~j may reverse 

orientation. Furthermore, the bases determine two partitions of D (up to finitely 

many points), but for a given j the bases Aj and Bj may belong to the same 

partition. Geometrically, an interval exchange corresponds to a (possibly non- 

orientable) measured foliation on a (possibly non-orientable) closed surface (of 

arbitrary Euler characteristic), and G(X) is a surface group (Proposition 6.4). 



Vol. 87, 1 9 9 4  PSEUDOGROUPS OF ISOMETRIES OF R 407 

If X is not an interval exchange, let N C D be the open set consisting of 

points belonging to only one base. We define a new system X1 on D1 = D \ N, 

replacing the generator qoj by its restriction(s) to D1 \ qa~ -1 (N) (this may increase 

the number of generators). It is easy to check that G(X1) = G(X). Iterate this 

operation if possible (in Rips' proof, this elementary operation has to be combined 

with others, so that a certain complexity does not increase). 

If this process terminates, some Xn is an interval exchange and G(X) is a 

surface group. Suppose 'it does not (what Rips calls the L e v i t t  case,  cf. [Lev3], 

[Lev4]). In this case, one shows that the intersection of the family D ,  is nowhere 

dense in D (Proposition 7.1). 

Finally, one proves (Section 8) that G(Xn) is free for n large enough, com- 

pleting the proof. This last argument, in our opinion the main novelty in Rips' 

proof, may be sketched as follows. 

Given X = (D, {~j}), there is a presentation of G(X) in terms of generators 

~---~. There are two kinds of relators. First, certain generators (p - 1 of them if D 

has p components) have to be set equal to 1. Then one takes as relators words in 

the ~-7 +1 such that the corresponding word in the ~ j±l  has a fixed point. One 

may restrict relations of the second kind to a fixed, finite set T~. 

Relations in T/ carry over to each Xn, but the labelling of the generators 

changes: typically, a generator ~j of X is replaced by many generators of Xn, 

each defined on a small subinterval of D,~. 

Of course a given generator ~ of G(X) may appear many times in 7~. But 

recall that N D ,  is nowhere dense. This implies (see Section 8) that,  when the 

relations are considered for X~ (n large), the total number of occurrences of a 

given generator and its inverse is at most one, so that G(Xn) is free. 

In [GLP2], the systems X (Rips' Unidentified Combinatorial Objects) are in- 

terpreted as finite generating systems.of closed pseudogroups. We generalize 

[Lev3], lemme VIII.l ,  to prove an important technical fact. Suppose (I) = {~j} 

and g / =  {~b~} generate systems X, Y having the same orbits on a given multi- 

interval D. Then ¢ admits a finite refinement ~' such that every element of ¢' 

may be expressed as a word in the elements of • and their inverses. We also 

show that  X is segment closed (a property introduced by Rimlinger [Rim1]). 

This has several consequences. First of all, one may associate to X a free 

action of G(X) on some R-tree T, provided X satisfies the following "no reflection 

condition": there is no x such that  x + t is in the orbit of x - t for t > 0 small. 
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Note that  there are examples with G(X) ~- Z/2Z;  this condition rules them out. 

This condition is satisfied if X is obtained from a free action on a tree as above. 

In this case, the corresponding free actions are approximations of the original 

action. 

The tree T may be viewed geometrically as follows. There is a compact foliated 

2-complex E(X)  canonically associated to X, and G(X) is obtained from ~rlE(X) 

by killing all loops contained in leaves. Let E~(X) -~ E(X)  be the covering 

with transformation group G(X). The tree T is the space of leaves of the lifted 

foliation on El(X).  The absence of reflections implies that  every leaf in E ' (X)  is 

closed, and the technical property mentioned above implies that  the leaf space is 

Hausdorff. 

Another consequence is the fact that  two systems on the same multi-interval 

D with the same orbits are equivalent in a strong sense. In particular, the group 

G(X) depends only on the orbits of X, not on a particular system of generators. 

See also [Rim3]. 

Furthermore, a given orbit of X has the structure of a metric graph, well 

defined up to quasi-isometry (just like the Cayley graph of a finitely generated 

group). It is then possible (see [Gab]) to relate dynamical properties of X to 

properties of these graphs such as the growth of balls or the number of ends. 

ACKNOWLEDGEMENT: We would like to thank E. Rips and Z. Sela for their 

conversations at the Isle of Thorns conference (also in Toulouse or at the ENS 

Lyon for Z. Sela), and S. Mozes, M. Feighn, M. Bestvina and F. Rimlinger. 

Finally, we thank the referee for scrupulously correcting notre anglais e t n o s  

math~matiques. 

1. Systems of isometries 

A multi-interval D is a union of finitely many disjoint compact intervals of 

Components of D may be d e g e n e r a t e  in tervals ,  i.e, consist of only one point. 

De/inition 1.1: A system of isometries is an X = (D, (~ j} j=l  ..... k), where D is 

a multi-interval and each ¢pj : Aj ---* Bj is an isometry between closed (possibly 

degenerate) subintervals of D. 

The intervals Aj, Bj are called bases.  A system of isometries X is said to be 

connected if any two components I,  I ~ of D are equivalent under the equivalence 
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relation generated by I ,~ I ~ if there exists j E {1 , . . . , k}  with Aj C I and 

Bj C I ' .  

A generator ~j : Aj --* Bj is a s ing le ton  if Aj is degenerate. 

A system of isometries X is said to be n o n d e g e n e r a t e  if every component of 

D and every base Aj, Bj has positive length. 

A ~-word is a word in the generators ~:1.  It is a partial isometry of D, 

whose domain (defined in the obvious maximal way) is a closed interval (possibly 

degenerate or empty). The domain of composition of two partial isometries 

corresponding to two reduced words may be smaller than the domain of the 

partial isometry associated to the reduced product word (for instance, consider 

the product of the words ~il and ~i1-1)" 

Two points x, y in D be long  to  t h e  s ame  X-orb i t  if there exists a ~-word 

sending one to the other. We denote the orbit of x by X(x). Note that  the orbits 

are countable. 
O 

If ~j is not a singleton, define ~ ° : Aj --* Bj as the restriction of ~j to the 

° ? ±l Its domain is a interior of Aj. A ~-word is a word in the generators ~j . 
O O 

(possibly empty) open interval. Let X (x) be the X -orbit of x, defined as being 

the set of images of x by ~-words. 

An orbit of X or X is s ingular  if it consists of an endpoint of D, or if it 

meets some OAj or OBj, and is r egu la r  otherwise. Note that an orbit of X is 

contained in an orbit of X with equality except perhaps for a finite number of 

them, the singular ones. 
O 

We can associate a sign + to every ~-word with nonempty domain: it is pre- 

cisely the value of the derivative of the associated global isometry of R. We denote 
O 

by X +(x) the orbit of x under orientation-preserving ~-words (i.e. restrictions 

of translations). 
O 

A ref lec t ion  is an orientation-reversing ~-word having a fixed point, the cen- 

t e r  of the reflection. For the proof of Theorem 0.1, it is enough to consider 

systems without reflections (see Section 2). The orbit of x • D by ~7 is one- 

s ided if x is the center of a reflection, and two-s ided  otherwise. 

If X is a system of isometries on a multi-interval D, we define a fo l ia ted  

2-complex  (E(X), $-) (or simply E) associated to X. Start with the disjoint 

union of D (foliated by points) and strips Aj x [0, 1] (foliated by {.} x [0, 1]). 

We get E by glueing the Aj x [0, 1] to D, identifying each (t, 0) • Aj x {0} with 

t • Aj C D and each (t, 1) • Aj x {1} with ~j(t) • Bj C D. The 2-complex Z 
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has the homotopy type of a finite graph. We will identify D with its image in Z. 

The foliation ~" is the decomposition of E into the leaves. A leaf is an equiv- 

alence class for the equivalence relation ,,~ generated by x ~ y if there is a 

j = 1,- . - ,  k with x, y corresponding to two points in the same leaf {*} x [0, 1] of 

Aj x [0, 1]. Two points of D are in the same leaf of ~r if and only if they are in 

the same X-orbit. For instance, if a point in D belongs to no base, then its leaf 

consists of itself. 

This suspension process is well known for interval exchanges. See J. Morgan's 

notes [Mor2] for the first appearance under the above generality, and [AL][Lev4] 

for suspensions as measured foliations with Morse singularities on manifolds. 

It is clear that ~ is connected if and only if X is connected. The fundamental 

group ~rl(E) is then a finitely generated free group. We will denote by Z the 

normal subgroup of r l (E)  normally generated by the free homotopy classes of 

loops contained in leaves of .T. 

Definition 1.2: If X is a connected system of isometries, we define G(X)  = 

In the case where D is connected, there is an easy presentation of the group 

G(X)  associated to a system of isometries X. The generators are the elements 

~oj, and the relations are ~-words having a fixed point. See [Lev2] for instance. 

See [Paul for Rips' combinatorial definition when D is not connected. 

Our goal will be to prove: 

THEOREM 1.3 (E. Rips): Let X be a connected system of isometries. Then 

G(X) is a free product of free abelian groups and surface groups. 

In the next section, we show that this theorem implies Theorem 0.2, which 

obviously implie s Theorem 0.1. 

There are two other interesting groups G (X) and G + (X) associated to a given 

X. They are studied in [Lev2] and [Gus]. They are related to actions on simply 

connected non-Hausdorff 1-manifolds. 

Assume for simplicity that X is connected, non-degenerate. Let int ~ be the 
o 

complement in E of the open segments OA i x (0,1), and ~" the foliation induced on 

int ~. We let £ be the normal subgroup of r l ( int  E) ~ lr1(~) normally generated 
o 

by the f~ee homotopy classes of loops contained in leaves of .T, and we define 

(Z)  = ~l(r~)/E. 
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As mentioned in the introduction, G (X) is the direct limit of G(X-t)  as t > 0 

goes to 0, and G (Z)  = G(X) for generic X. Furthermore G (X) is a free product 

of free abelian groups; the factors of rank > 2 are isomorphic to the groups of 

periods of the orientable homogeneous components of X (in the sense of Section 

4). This implies that G(X) is finitely presented, since the set of left classes ~/£:  

is finite. But we won't need this a priori fact, it will follow from our arguments. 

Now l e t / :+  be the normal subgroup of r l ( ~ )  normally generated by the free 

homotopy classes of loops contained in leaves of ~ and having trivial holonomy, 

and G+(X) = 7rl(Z)/£: +. This group is the fundamental group of Haefliger's 
O 

classifying space B X .  By [Gus], it is a free product whose factors are free abelian 

groups, Z/2Z,  and dihedral groups Z a )~ Z /2Z (a >_ 2); the free abelian factors 

of rank _> 2 are as before, while the dihedral factors are the groups P associated 

to the nonorientable homogeneous components of X (see Section 4). 

2. F r o m  ac t ions  on  R-trees  to  s y s t e m s  o f  i sometr i c s  

We define an action of a group on a metric space to be a left isometric action. 

A b r a n c h  po in t  in an R-tree T is a point x such that T \ ( x }  has at least 3 

components. A f inite  t ree  is a compact R-tree which is the convex hull of finitely 

many points, hence has only finitely many branch points. 

Let G be a finitely generated group acting on an R-tree T, and ( ' y l , . . . ,  ~/p} a 

fixed system of generators for G. Let K be a finite subtree of T. We define a 

connected system of isometrics X = X ( K )  as follows. 

Let I 1 , . . . , I n  be the segments of K that are the closures of the connected 

components of K minus its branch points. Consider them as embedded disjointly 

in R, and let D be their union. The system X has two types of generators. 

b be the endpoints of the segments For every branch point b of K,  let xb , . . . ,  X~° 

I~ 1 , . . . ,  Ii° corresponding to b. Consider the following finite set of singletons on 

D: (I)o = {x~bl ~ xb,2," " ", x. b~ H X .b,. I b branch point of K}. We could have taken 

all possible pairs, but these will suffice. 

Now the elements 71 , . . . ,  7p of G define partial isometrics of K (defined on a 

possibly empty closed finite subtree of K)  gk : K N 7~-l(K) --* 7k(K) N K with 

gk(t) = "Tk(t). The partial isometrics gk of K induce partial isometrics of D in 

the natural way. That  is, for every 1 < i, j < n and 1 < k < p, gk defines, by 

maximal restriction, an isometry ~ijk between a closed interval of Ii and a closed 
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interval of Ii.  Set 

¢ = ¢0 u {~ijk}l<i,j<,,, l<k<p 

o 

and X = (D, ¢). If the action on T is free, then no t -word  is a reflection. 

LEMMA 2.1: The group G(X(K) )  is generated by {71,...,'Yp}, relations being 
~ n  words "y~: ...~.~,, (ei = +l )  such that there exists x e K with %~ . . . % ,  (x) = x 

E n  - -  - -  and with "Yi~" "'"ri~ (x) E K for 1 < m < n. 

Proof: Let ~(K)  be the foliated 2-complex obtained (as in the construction for 

D) by glueing K (foliated by points) and strips Ki x [0, 1] (foliated by {*} x [0, 1]), 
--1 where K~ = K N "r~ K,  by identifying each (t, 0) • Ki x {0} with t • K~ C K 

and each (t, 1) • g i  x {1} with gi(t) • gi(gi) C g .  If £ ( g )  is the subgroup 

of ~rlG(g) normally generated by closed loops in leaves, then ~r lG(g) /Z(g)  

obviously has the presentation of the statement of the lemma. 

Now first make a homotopy equivalence on ~(K)  consisting in pinching to a 

point every leaf corresponding to an element of ¢0. The new foliated 2-complex 

is obtained from G ( z ( g ) )  by cutting open along leaves {*} x]0, 1[ corresponding 

to the subdivision of gk into the qoija for every k. When we take the quotients 

by the subgroups normally generated by loops in leaves, the fundamental groups 

of the new complex and of E(X(K))  become isomorphic. | 

Now consider G as in Theorem 0.2. The convex hull of any orbit is an invariant 

subtree. Since G is countable, we may assume that T is the union of an increasing 

sequence of finite subtrees Kn. By Lemma 2.1, there are natural epimorphisms 

Pn : G(X(Kn))  --~ G(X(Kn+I)),  and G/Ge is the direct limit of the sequence 

p,~. Indeed, if Fp is the free group on 71,-.-,~p, then the natural maps Fp 

G(X(K~))  defined in Lemma 2.1 induce epimorphisms G --* G(X(K~))  that  

commute with the Pn, hence define an epimorphism from G to the direct limit. 

The kernel is obviously Ge. Theorem 0.2 then follows from Theorem 1.3 and the 

following fact (see similar statements in [Lev2], Lemme 0, and [GS], Lemma 2.3): 

LEMMA 2.2: Suppose Pn : Gn -4 Gn+l is a sequence of epimorphisms, where 

each G,  is a finitely generated free product of free abelian groups and surface 

groups. Then pn is an isomorphism for n large enough. 

Proof: First note that only finitely many isomorphism classes of groups may ap- 

pear in the sequence, since the Gn have a bounded minimal number of generators. 
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Then observe that the groups Gn are residually finite by [Gru], hence hopfian, 

that is are not isomorphic to proper factors. | 

Remark: If G is a finitely presented group acting freely on T, then it follows from 

the above lemmas that  there is a finite subtree Kn o f T  such that  G ~_ G(X(K~)). 

As Rips has suggested, an explicit Kn may be taken to be the convex hull of the 

finitely many points wix where x is any base point in T, and the wi's consist of 

generators of G and words in the ~/~ that appear as final subwords (including 

the empty one) of a finite set of relations for G. Also note that X(Kn) has no 

reflection. 

3. Imanishi~s t h e o r e m :  m i n i m a l  c o m p o n e n t s  
O 

Let X be nondegenerate. Let E C D be the union of all finite singular X -orbits. 

It is finite and contains all endpoints of D, so that D \ E is a finite union of open 

intervals. 

Consider the equivalence relation generated on Ir0(D \ E) by saying that  two 

intervals are equivalent if some ~(-orbit meets them both. Let U be the union 

of all intervals in an equivalence class. The following theorem states that either 
O O 

U contains only finite X-orbits ,  or every X-orbi t  contained in U is dense in U. 

The important point (compare [Ima], Theorem 1) is that  every orbit (of X or 

~( ) is finite or locally dense: the closure of an orbit cannot be a Cantor set. 

THEOREM 3.1: D \ E is a disjoint union of open f( -invariant sets U1 . . . .  , Up, 
where each Ui admits one of the following descriptions: 

• f ami ly  o f  f in i te  o rb i t s :  Ui consists of intervals of equal length meeting 

only finite ~(-orbits; the family may be u n t w i s t e d  (every X-orbit con- 

tained in Ui is two-sided and meets each interval exactly once) or twis ted  

(there is a one-sided orbit meeting each interval once, while all other orbits 

are two-sided and meet each interval twice). 

0 

• m i n i m a l  c o m p o n e n t :  every X -orbit contained in Ui is dense in U~. 

Remark 3.2: 

• A minimal component Ui may consist of several intervals. 



414 D. GABORIAU ET AL. Isr. J. Math. 

• Twisted families of finite orbits may occur only if X contains reflections. 

• The number p may be bounded in terms of k and the number of compo- 

nents of D. 

• We define the w i d t h  ei of a family of finite orbits as the common length 

of components of Ui (half this length if the family is twisted). 

Proo~ (following [AL], appendice) If L is a finite regular X-orbi t ,  orbits close 

to it are also finite, with the same cardinality (twice this cardinality if L is one- 

sided). These orbits may be pushed until orbits in E are reached. This shows 
O 

that  intervals of D \ E meeting finite X -orbits belong to families of finite orbits. 

CLAIM: No orbit closure is a Cantor set. More precisely, let L be an infinite 
O 

X -orbit. We claim that  there exists 6 > 0 such that every component of D \ -[ 

has length >_ 6. 

To prove this, choose 6 > 0 such that: 

- any two points in E have distance > 6; 
O 

- if a is an endpoint of a base Aj, then the distance between a and A j A L is 

either 0 or > 6. 

Suppose J is a component of D \ L of length c < 6. At least one endpoint 

x of J has infinite X-orbi t .  Indeed, if both endpoints have finite orbits, they 

cannot be regular, because the infinite L accumulates on them, hence are singular, 

contradicting the first assumption on 6. Choose y, z E X (x) such that  z E X +(y) 

and 0 < [y - z[ < c. Interchanging y and z if necessary, fix a word ~j,° ~q o-.  "°~Jl° el 

(ei = + l )  taking x to y and sending some subinterval of J between y and z. 

Define x'  E J by Ix - x'[ -- [y - z[. 
= o ~ i  . . .  o ~ 1  is Since x'  does not belong to ~7 (z) L, there is an i such that qo j~ o o qa j, 

not defined at x'. Consider the smallest such i. Let x"  be the point closest to x 
0 ~1 I t  x". ) in (x, x ~] such that  ~ j, o - . .  o ~ j~ is not defined at Then ~_~ 

(interpreted to be x"  if i = 1), which is not in L, is an endpoint of the domain 

of  el ~j~, and is at distance < 6 from ~ ~.,-1 o . .  • o ° ~1 j,_~ ~j~ (x) E L. This contradicts the 

way 6 was chosen, thus proving the claim. | 

To complete the proof of the theorem, we consider an infinite ~(-orbit L1 

meeting a component J1 of D \ E,  and we show that  LI A J1 is dense in Jz- 
O 

Suppose not. Let L be an X-orb i t  in the frontier of L1 A J1 in J1. Since L 

is infinite, we can find 5 as above. Choose y, z C L with 0 < [y - z[ < 6 and 
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O 

z E X + (y). Then by definition of 5, the segment [y, z] is contained in L, hence 

in L---~. Since y and z are in the same ~7 +-orbit, this implies that L belongs to 

the interior of L1, a contradiction. | 

Definition 3.3: A nondegenerate X is m i n i m a l  if D \ E consists of a single 

minimal component U. 

Now let a E E be in the closure of a minimal component U of a nondegenerate 

X. Let J be a closed nondegenerate interval with a E OJ and J \ { a }  C U. 

Consider images of a by ~-words defined on some nondegenerate interval [a, b] C 

J. At least one of them has to be in U: otherwise they would all be in the 

finite set E,  and X-orbits meeting J near a would be finite. In particular, X(a)  

contains U. 

Together with a simple compactness argument, this leads to the following fact 

(noticed by E. Rips): given a closed interval H of positive length in a minimal 

component U, there exists an integer N such that every x E U can be sent into 

H by a ~-word of length <_ N. 

It also proves that every X-orbit is dense if X is minimal. 

Definition 3.4: A system of isometrics X is p u r e  if X is connected, nondegen- 

crate, and E consists only of endpoints of D. Note that either D \ E is a family 

of finite orbits or X is minimal. 

PROPOSITION 3.5: Let X be connected, possibly degenerate. There exist 

X l , . . . , X p  pure such that G(X) ~_ G(Xx) * . - . *  G(Xv) * F, with F a free 

group. 

Proof'. We use two simple operations. 

- Removing a singleton. Let X'  be obtained from X by removing a singleton 

~ j :  {a} --~ (b}. It is easy to check that G(X) and G(X')  are related as follows. 

I f X '  is connected, then G(X) '~ G(X')  ifb e X'(a),  while G(X) ~_ G ( X ' ) , Z  if 

b q~ X~(a). Indeed, attaching a segment between a and b to the foliated 2-complex 

E(X ~) adds a free generator to 7rlE(X~). In the first case, this new generator 

is killed in G(X).  In the second case, the new generator is not involved in any 

nontrivial relation. 

If X t has two components X1 and X2, then G(X) ~- G(X1) * G(X2). Indeed, 

E(X)  is obtained from E(Xx), E(X2) by joining them with an arc Aj x [0, 1]. 
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Hence r l ~ ( X )  - r l~ (X1)  * ~h~(X2) and the only relations that  may appear are 

relations of the free factors, and their products. 

- Splitting an interval. Let x be an interior point of a component I of D. 

Assume that  x is not the domain or range of a singleton ~oj. We are going to 

split I apart at x. 

First we split bases Aj containing x in their interior, replacing ~j by two 

generators: the restrictions of ~j to the closures of the components of Aj \ { x } .  

Split bases Bj similarly. This does not change G(X). 

Then replace I by two disjoint intervals /1 and /2, disjoint from the other 

components of D, isometric to the closures of the components of I \ { x } ,  so 

that  x is replaced by two points Xl,X2. We get a new multi-interval D'. Each 

generator gives rise to a partial isometry of D p in the obvious way, defining X '  

on D'. To relate G(X) and G(X'), simply note that  G(X) ~_ G(X"), where X "  

is obtained from X ~ by adding a singleton taking Xl to x2. 

To prove the proposition, first remove all singletons and isolated points of D, 

so as to get a non-degenerate Xnd. Then define E as before, and split D apart 
O 

at each point of E N D .  We get X 1 , . . . ,  Xp corresponding to the sets U1, . . . ,  Up 

associated to Znd by Theorem 3.1. | 

Theorem 1.3 will now follow from: 

PROPOSITION 3.6: I f  X is pure, then G(X) is either a free group, or a free 

abel/an group, or a surface group. 

Recall that either X is minimal o r /~  is a family of finite orbits. In the first 

case, the result will follow from Propositions 4.2 and 6.4 and Section 8. We settle 

the second.case right away, as follows. 

If the family is untwisted, ~ is the product of an interval by a finite 1-complex 

a, with the product foliation {*} x a. If it is twisted, ~ is a twisted interval 

bundle over a finite 1-complex a. In both cases G(X) is trivial, since every cycle 

in a is freely homotopic into a leaf in ~. 

C O R O L L A R Y  3 . 7 :  I f  X is a system of isometrics whose orbits are finite, then 

V(X)  is free. m 
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4. Homogeneous components and discrete approximation 

Let X be non-degenerate. Each generator ~j : Aj --* Bj is a restriction of a global 

isometry of R. Let Q be the subgroup of Isom(R) generated by these isometries. 

Clearly, f ix ,  y E D are in the same X-orbit, then they are in the same Q-orbit. 

The converse is false in general. An example where it holds is obtained by 

applying the construction in Section 2. to a free action of a noncyclic free abelian 

group G on R, with K large enough. In this case Q - G. This is the simplest 

example of what we shall now call a homogeneous component. 

First note the following simple facts. Let P be a dense countable subgroup 

of Isom(R): it consists of translations and (possibly) reflections. Fix an open 

interval I C R and e > 0. Then P is generated by its translations of amplitude 

less than ~, and its symmetries with center in I.  If ~ is an isometry of R such 

that x and ~(x) belong to the same P-orbit  for uncountably many x, then ~ E P. 

Now let X be nondegenerate. A minimal component U is orientable 

homogeneous if there exist an interval J C U of positive length, and a dense 
O 

subgroup P C R, such that  x, y E J belong to the same X-orb i t  if and only if 

x - y E P.  Using the facts mentioned above, it is easy to see that  this property 

then holds for every interval contained in U, with the same P,  and that  P is 

contained in Q (hence is finitely generated). The group P should be viewed as a 

group of periods, see the proof of Proposition 4.2 below. 

If reflections are allowed among the X-words, there may also be 

nonorientable homogeneous components. The definition is the same as 

above, but now P is a dense subgroup of Isom(R), and x, y E J belong to the 
O 

same X -orbit if and only if they belong to the same P-orbit .  In this case it is not 

quite true that  P is independent of the choice of J: it may change by a conjugacy 

in Isom(R). 

Remark: Orientable homogeneous components were called weakly complete in 

[Lev2], complete or equivalent to a group in [Lev3]. Rips calls them axial because 

they correspond to free actions on R. Of course the word h o m o g e n e o u s  applies 

to more general situations. 

Recall that  X_t  = (D, {~-t}) ,  where ~j t is the restriction of ~j to [aj+t, bj-t] 

(with Aj = [aj, bj]). Note that  X - t  is defined for t > 0 small enough. 

PROPOSITION 4.1: Assume no minimal component of  X is homogeneous. For 

t > O, all orbits of X_t  are finite. 
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Remark: (cf. [Levl]) If X has a homogeneous component U and K C U is 

compact, then K is contained in a homogeneous component of X - t  for t small. 

In the other direction, define Xt by enlarging the domain of each ~j. Then every 

minimal component of X is contained in a homogeneous component of Xt  for 

t > 0 .  

Proof: (following [Levl], proof of lemme III.5) We suppose that X_t has a min- 

imal component V, and we prove that  X has a homogeneous component. Fix 
o 

an interval J = In, a + 2] C V of length / E (0, t) with a + g E X_~ +(a). In the 

rest of the argument, all points x0, Y0, x, y will be in J.  Let h: R ~ R/eZ be 

the canonical projection. One has to think of R/eZ as the segment J with its 

endpoints a, a + g identified (see Figure 1). 
o 

First note the following: if Xo, Y0 are in the same X_t +-orbit, and h(y) = 

h(x) + h(yo - Xo), then by extending the domains and ranges on both sides by 
o 

t > 2, one has y E X ~(x). 

h(y o) ~ . 

Figure 1: Finiteness of Xt-orbits 
o 

Let Po be the subgroup of R generated by So = {Yo - xoI Yo E X - t  +(Xo)}. 

It is dense and contains g. If h(y) - h(x) E h(Po) (equivalently if y - x E Po), 

then y E X ~(x): use induction on the number of elements of So needed to write 

y - x. (If X contains no reflection, it follows easily that  only positive elements 

of ~( can send a point of J to a point of J).  
o 

Now consider an X -word "y taking some x0 E J to some Yo E J. If "y is positive, 
o 

we claim that  h(y) = h (x )+h(yo -xo )  implies y E X ~(x). Indeed, choose Po E Po 

such that  x + P0 belongs to the domain of % and ~/(x + Po) belongs to J .  Then 

the ~7 +-orbit of x contains x +Po (since Po E Po), hence ~/(x +Po), hence y which 

is congruent to "y(x +Po) mod P0. If "y is negative, a similar argument shows that 
o 

h(x + y) = h(xo + Yo) implies y e X (x). 

It is now clear that  the minimal component of X containing V is homogeneous. 
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O 

If it is orientable, the group P is generated by {Y0 - x0 I Y0 E X ~(xo)}. | 

PROPOSITION 4.2: Suppose X is pure, minimal, and homogeneous. I f  the 

component is orientable, then G(X) is free abelian (isomorphic to P). If  the 

component is not orientable, then G(X) is trivial. 

Proof'. [Conceptually, the system X should be thought of as equivalent to the 

action of P on • (cf. [GLP2]). Arguing as in [Pau], one then gets that  G(X) is 

isomorphic to the quotient of P by the subgroup generated by elements acting 

with a fixed point, that  is P or {1}. We provide here a direct proof. The argument 

is similar to the proof of prop. 1.2 of [Lev2], which says that  G (X) - P in the 

orientable case.] 

First a remark. Let [a, a + r] and [b, b + r] be contained in /~ ,  with b E f(  + (a). 

Since/?) is homogeneous, we can choose (maybe not in a continuous way) a path 
O 

at joining a + t to b + t in a leaf of j r  (defined in Section 1) for each t E [0, ¢]. Let 

At be the loop consisting of a0, [b, b + t], at, [a, a + t]. Its class [At] in G (X), hence 

in G(X), is independent of the choice of a0 and at, and it is locally constant in 

t. It follows that  [At] -- 1 for all t E [0, r]. A similar result holds for intervals 

[a, a + ~-] and [b - r, b] if some orientation-reversing ~-word takes a to b. 

Also note that,  by general position, any class in 7rxE(X) may be represented by 

a piecewise smooth loop "y consisting of segments ai tangent to ~" and segments 

j3~ c D. 

First assume tha t /~  is an orientable component. Pureness allows us to change 

the embedding D --* R so that  all maps ~j preserve orientation. Given -y c E as 

above, define p('/) E P by following ~/and adding the (signed) variations of the 

x-coordinate along the segments fl~. [One may think of j r  as being defined by 

a closed differential 1-form w (equal to dx on D), and p('y) is simply f w. The 

group P is the group of periods of w.] 

This defines an epimorphism p: IrlE ~ P which factors through G(X).  

We claim that  the kernel of p is equal to £, so that p induces an isomorphism 

G(X) - ,  P .  

Let "y be a loop as above, representing an element in the kernel of p. If ~ is 

contained in a leaf, then it represents an element of £. Otherwise, cancellation 

occurs in the computation of p('~). The remark made in the beginning of the proof 

then allows us to decrease the number of segments in -y N D without changing 
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the class of ~/in G(X). This completes the proof in the orientable case. 

In the non-orientable case, let us fix a one-sided regular leaf L. Since L is 

dense, any free homotopy class may be represented by a piecewise smooth loop 

7 as above, such that  every segment ai is contained in L. Using the preliminary 

remark, we may then replace every segment/~ by a segment contained in L and 

having the same endpoints, without changing the class of 7 in G(X). It follows 

that  G(X) is trivial. I 

5. I n d e p e n d e n t  g e n e r a t o r s  

Say that  the generators ~; are i n d e p e n d e n t  if no nontrivial reduced word in 

the oj  +1 with nonempty domain is a restriction of the identity (in particular, X 

contains no reflection). Equivalently (when X is connected), the group Z; C ~rl~, 

is trivial. This may be shown to imply that X has no homogeneous minimal 

component. 

PROPOSITION 5.1: Let X be connected nondegenerate without homogeneous 

component. There exists Y = ( J, {¢~}) connected nondegenerate such that 

G(Y) ~- G(X) and the generators ¢~ are independent. 

Proof: We first assume that  X has no reflection, and we argue in two steps. 

1: First consider any connected nondegenerate X. Fix t > 0 smaller than half 

the length of any base, and assume that all orbits of X- t  are finite. For 0 < s <_ t, 

we write E-8  = E ( X - 8 ) ,  Yr-8 = ~ ( X - 8 ) ,  £ - 8  = / : (X-8) .  We view Y:-8 as a 

partial foliation of E, defined on the subcomplex E_8. 

The space of orbits of X_t,  equal to the space of leaves of .F_t, is a finite 

metric graph F_t.  Its vertices are singular orbits, its terminal vertices being the 

endpoints of D. Its edges are families of finite orbits, their length being the width 

ei of the family (see Remark 3.2). 

The quotient map P-t : E_t  ---* F - t  induces an epimorphism r l ~ - t  --~ 7qF_t 

whose kernel is clearly ~ - t  (for a proof h la Bass-Serre, consider the action of 

lr lE_t on the space of leaves of the foliation induced by ~ - t  on the universal 

covering of E- t ;  also see CoroUary 3.7). 

On the other hand, the natural inclusion E_t  ~ E induces an isomorphism 

~ ' l~- t  ~ ~'IE and an injection Z - t  ~-* Z. The group G(X) thus appears as the 

quotient of ~rlF-t ~ G(X_t) by a subgroup of r l F - t ,  that  we want to describe. 
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Since we are assuming that X has no reflection, any orbit H of X-t is trans- 

versely orientable, in the following sense: we can choose local orientations of D 

near each point of H in such a way that any ~o-t-word whose domain meets H 

preserves these orientations. 

We can then define on F-t a differentiable structure for which the restric- 

tion of P-t to D is an immersion into F-t. We need only do it near a vertex 

v = p-t(H) of valence > 3. An initial segment of an edge near v may be lifted to 

a small subinterval of D having one endpoint in H. A choice of a local orientation 

of D near H allows us to partition initial segments of edges near v into exactly 

two classes: those arriving at v and those departing from v. We then declare 

that edges in one class are tangent to each other and opposite to edges in the 

other class. 

An immersed cusp of length s is a map c: f-s, s] -+ F-t such that the 

restrictions of c to f-s, 0] and [0, s] are locally isometric immersions but c is 

not an immersion : it folds at 0. For a basic example, consider a segment 

[a, a + s ] C  D, with s < t, and suppose qo~ -t is defined at a. Then define c by 

setting c(u) = p - t (a  + u) for u • [0, s] and c(u) = p - t (~ j (a  - u)) for u • f - s ,  0]. 

A loop in F - t  is s -cusp ida l  if it consists of a finite number of immersed cusps 

of length < s, joined at their endpoints. 

LEMMA 5.2: The group G ( X )  is isomorphic to the quotient of 7r l r - t  by the 

normal subgroup C generated by free homotopy classes of t-cuspidal loops. 

Proof: (cf. [Lev2], p. 743) Choose a strong deformation retraction r_t : E ~ ~,,-t, 

and consider the epimorphism 7r1~ 4--4 7f l r_ t  induced by P-t  o r_t. The image of 

is clearly contained in C (cf. the basic example of immersed cusps). 

We complete the proof by showing the following: given a cusp c of length 

s _< t, and points x , y  • D with p - t ( x )  = c ( - s )  and P-t(Y) = c(s), there exists a 

path 6 C ~ from x to y, contained in a leaf of ~rs_t, such that  (P-t o r_t)(6) is 

homotopic to c in F - t .  

We choose 0 = Sl < s2 < -. .  < sp = s such that there exist h + : [si, Si+l] ~ D 

and h~- : [ - S i + l , - s i ]  ~ D with P-t  o h~ equal to the restriction of c. We may 

assume x = h~_ l ( -S  ) and y = h+_l(S). There exists a path 61 from h i ( 0  ) to 

h+(0) in a leaf of ~--t. We successively construct paths 6i joining h~-_l(-Si ) to 

h+-l(Si) in a leaf of ~s , - t ,  such that  (P-t o r_t)(6i) is homotopic to the restriction 

of c to [ -s l ,  si]. For i = p we obtain the required 6. | 
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2: Now let X be as in Proposition 5.1. By Proposition 4.1, every orbit of X-t  
is finite for t > 0. Since free groups are hopfian, we may choose t so that  the 

natural epimorphism G(X_t) ---* G(X_8) is an isomorphism for all s E (0, t). 

For every edge e of F_t, consider a segment Ee isometric to e. Enlarge it by 

glueing a segment of length t on every endpoint of e that  does not come from an 

endpoint of D. Let J be the disjoint union of these enlarged segments. 

Since any edge of F - t  containing an endpoint of D has length >_ t, there exists 

an immersion (possibly non unique) q: J ~ F - t  whose restriction to each Ee is 

the natural embedding. 

We now associate singletons on J to every vertex v of valence _ 3 of F - t .  

Lift a transverse orientation of the X_t-orbit  v (see above) to a neighborhood of 

q - l (v )  in J ,  and partit ion q-l(v) into two classes, depending on the position of 

Ee, for every edge e containing v. Choose x+ and x_, one in each class. Then 

define singletons from x+ to each point in the opposite class, and from z_  to each 

point ~ x+ in the opposite class. Let Y-t be the connected degenerate system 

thus obtained on J.  

Define Y by extending each singleton {Xl} --* {x2} to Ix1 - t, xl + t] (the 

transverse orientation of q(xl) dictates which of the two possible extensions must 

be chosen). 

Clearly Z(Y-t) is trivial, and G(Y-t) is isomorphic to ~rlF-t. In fact, the space 

of orbits F~_t of Y-t is obtained from F - t  by glueing edges of length t, each one 

at one of its endpoints (they correspond to the segments that  were added), so 

that  ~lF~_t is canonically isomorphic to r l F - t .  

Using the retraction from F~_t to F_t  induced by q, we can project s-cuspidal 

loops from F' to F - t  for s < t. Lemma 5.2 then implies G(Y) "~ G(X). 
- - t  - -  

Furthermore the generators of Y are independent since ~(Y_8) is trivial for s > 0. 

This completes the proof of the proposition when X has no reflection. If 

reflections are allowed, we choose t outside of a countable set, so that all centers 

of reflections of X belong to regular X_t-orbits. The graph F - t  may have a new 

type of terminal vertices, corresponding to one-sided orbits. The definition of 

an immersion (and of an immersed cusp) must then be changed, so as to allow 

folding at these vertices. With these changes, Lemma 5.2 remains valid. 

We then define J and Y-t as before, but with a new type of singletons: for 

each terminal vertex vi coming from a one-sided orbit, we add the trivial singleton 

{vi} ~ {vi}. To define Y, we extend these singletons as reflections. It is still 
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true that  G(r_t)  ~- zclF_t and G(Y-8) ~- G(X_s) for s E [0,t]. 

Of course the generators of Y are not independent, because of the reflections. 

But the injection -~(Y-t) --* -~(Y-~) is an isomorphism for s > 0, and we get 
b 

independent generators after replacing each reflection defined on [vl - t, vi + t] 

by its restriction to [vi, vi + t]. | 

6. An  inequality 

Given a system of isometries X,  define : 

• m as the total  length of D; 

• e as the sum of the lengths of the domains Aj of the generators; 

• e as the sum of the widths ei of the families of finite orbits (see 3.2). 

PROPOSITION 6.1 (cf. [Lev3], c o l  II.5:): Let X be nondegenerate without 

homogeneous component. 

1. The inequality e + ~ >_ m always holds. 

2. I f  the generators ~j are independent, then e + ~ = m. 

Remark: This proposition also holds if X has an homogeneous component,  but 

we will not need it. I t  is a special case of the following general result [Lev5]. Let 

# be a probabili ty measure on a standard Borel space K.  Let ~ j :  Aj --* Bj 

be measure preserving isomorphisms between Borel subsets of K.  They are 

i n d e p e n d e n t  if the fixed point set of any nontrivial reduced ~-word has measure 

0. Define ~ -- ~ j  ~(Aj),  and e -- inf{#(Z)[ Z C K meets every orbit} (one can 

show 

e =  /K  n--~d#(x),  

where n(x) is the cardinality of the orbit of x and 1 = 0). In this situation, one 

has e + ~ >_ 1, with equality holding if  and only if  the ~ j ' s  are independent and 

the equivalence relation whose classes are the orbits is amenable. The proof uses 

a result of S. Adams [Ada]. 

Proof." The functions t ~ i ( X - t )  and t ~ e(X_t)  are continuous : g is clearly 

linear, and e is Lipschitz. Indeed, if k is the number of generators in X,  then 

going from X - t  to X- t+ ,  perturbs at most a subset of D of measure 4ks, hence e 
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changes by at most 4ks (e is even piecewise linear, cf. [Lev3]). Using Proposition 

4.1, we then reduce to the case when all orbits of X are finite. 

Every orbit of X may be viewed as a "Cayley graph": the vertices are the 

elements of the orbit, and there is an edge labelled j between x and y whenever 

y = ~j (x). The generators are independent if and only if all" regular orbits are 

trees. 

Consider a family U~ of finite orbits. All orbits in U~ are isometric as graphs 

(except the one-sided orbit if Ui is twisted). Let v~ be the number of vertices, ai 

the number of edges, el the width of any two-sided orbit. Note that 1 + a~ > v~, 

with equality if and only if the graph is a tree. (If U~ is twisted, the graph is not 

a tree.) The proposition then follows, since 

e = Z e l  

e = Z aiei 

m = ~ vlel | 

Definition 6.2: X is an in t e rva l  e x c h a n g e  if X is connected, nondegenerate, 

and every x E D outside of a finite set belongs to exactly two bases. 

(The number of bases that  a point belongs to is the sum of the number of j ' s  

such that x is in Aj and of the number of j ' s  such that  x is in Bj.) 

COROLLARY 6.3: Let X be connected nondegenerate with independent gener- 

ators. Suppose X has only finitely many/~nite orbits (hence e = 0), and every 

x E D belongs to at least two bases. Then X is an interval exchange (otherwise 

g>m) .  | 

By a surface group, we mean the fundamental group of a closed connected 

(possibly non-orientable) surface. We also have : 

PROPOSITION 6.4: I f X  is a pure, minima/, interval exchange, then G(X) is a 

surface group. 

Proo~ In this case ~ is homeomorphic to a compact surface with boundary, and 

is the normal subgroup of ~rlE generated by loops contained in 0~.  If one had 

a closed loop in a leaf of ~ not in the boundary, then it would correspond to a 
o o 

point of D whose X-orbi t  is a singleton, contradicting the pureness of X. | 
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7. Erasing intervals 

Let Xo = (Do, {~j}) be minimal and pure. The set L(Xo) of points belonging to 

only one base is open in Do. If it is not empty, define X1 on the multi-interval 

D1 = Do ". L(Xo) by replacing every ~j by its restrictions to the finitely many 

components of the multi-interval D1 ". ~-fl(L(Xo)). If some component of L(Xo) 

coincides with a component of D, then the corresponding generator is simply 

removed. Note that  by minimality and pureness, the closures of ~ - I (L(Xo) )  and 

L(Xo) do not meet. 

It is easy to check that X1 is pure and minimal (every ~ 1-orbit is still dense in 

D1), with G(X1) ~- G(Xo). Indeed, ~(X1) is an obvious strong retract of ~.(Xo), 

and segments of leaves in L(Xo) x [0, 1] do not contribute to relations. If the 

generators of X0 are independent, so are those of X1. 

If there are points of D1 belonging to only one base, we can repeat this op- 

eration. Iterating leads to an infinite sequence X~ defined on multi-intervals 

Do D D1 D . . .  D D~ D --., unless for some n every point of Dn belongs to at 

least two bases. 

PROPOSITION 7.1 : Let Xo be pure minimal with independent generators. If the 

process described above (due to Rips) does not terminate after a finite number 

of steps, then NneN D~ is nowhere dense in Do. 

Proo~ By way of contradiction, suppose there is a nondegenerate closed interval 

I in NneN Dn. According to the remark made before Proposition 3.5, there exists 

N E N such that every y E D can be sent into I by an Xo-word of length _< N. 

Every orbit O of Xn is a "Cayley graph" : given a generator qo : A ~ B of Xn 

and x E O n A, there is an edge labelled qo between x and ~(x). The distance 

between two points of O is the minimum length of a path between them in this 

graph. By construction, an orbit of Xn+l is obtained from an orbit of Xn by 

removing all the terminating edges. 

In particular, since the erasing process has length _> N + 1, there is an XN+I- 

orbit Os+l and a point y in L(Xo) N ON+I such that,  in the Xo-orbit of y, the 

distance from the terminating vertex y to ON+I is equal to N q-1. By minimality 

of X0, the X0-orbit o fy  meets } C DN+I- Hence y is, in its Xo-orbit, at distance 

_> N + 1 from any point of I. This contradicts our first assertion. | 
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8. T h e  g r o u p  is free  

Let X be pure, minimal, not homogeneous, not an interval exchange. Replace X 

by X0 having independent generators, using Proposition 5.1. One checks that  Xo 

is also pure and minimal. Alternatively, one can check that,  if X has independent 

generators, then so do the Xi's given by Proposition 3.5. 

Apply the erasing process to Xo. If it stops after n steps, then Xn is an interval 

exchange by Corollary 6.3, and G(X) ~_ G(Xo) ~ G(Xn) is a surface group. 

Assuming the process goes on for ever, consider the foliated 2-complex ~o 

associated to Xo. Since generators are independent, any loop contained in a leaf 

and disjoint from each ~Aj × (0, 1) is nullhomotopic. 

This allows us to find a finite 1-complex K C So, whose 0-skeleton is K ° = 

K N Do, whose edges are segments of leaves, such that  Z(X0) C ~rl~o is the 

normal subgroup generated by loops in K.  

First assume that the intersection of K with each strip Aj x (0, 1) is connected. 

Then we claim that G(Xo) is free. To see this, choose a maximal subtree in 

each component of K.  For each edge not in these trees, remove from So the 

corresponding strip Aj × (0, 1). This does not change the associated group, and 

brings us to the trivial situation where every component of K is a tree. 

To do the general case, consider the finite set K ° = K N Do. Using Proposition 

7.1, perform the erasing process until all points of K ° belong to different compo- 

nents of the multi-interval Dn. The 2-complex Zn associated to Xn is contained 

in S0 in a natural way, and Kn = K N En generates £(Xn). It follows that  

G(Xo) ~- G(X~) is free. | 

References 

[Ada] 

[AL] 

[AY] 

[BF] 

S. Adams, Trees and amenable equivalence relations, Ergodic Theory and Dy- 

namical Systems 10 (1990), 1-14. 

P. Arnoux and G. Levitt, Sur l'unique ergodicitd des 1-formes fermdes sin- 

gulibres, Inv. Math. 84 (1986), 141-156. 

P. Arnoux and J.-C. Yoccoz, Construction de diffdomorphismes 

pseudo-Anosov, C. R. Acad. Sc. Paris 292 (1981), 75-78. 

M. Bestvina and M. Feighn, Stable actions of groups on real trees, preprint 

(Feb. 1992). 



Vol. 87, 1 9 9 4  PSEUDOGROUPS OF ISOMETRIES OF R 427 

[CM] 

[DN] 

[FLP] 

[Gab] 

[GLP2] 

[Gru] 

[GS] 

[Gus] 

[nael] 

[Hae2] 

[Im~] 

[Kea] 

[Levl] 

[Lev2] 

[Lev3] 

[Lev4] 

[Lev5] 

[Mak] 

M. Culler and J. Morgan, Group actions on R-trees, Proc. Lond. Math. Soc. 

55 (1987), 571-604. 

C. Danthony and A. Nogueira, Measured foliations on nonorientable surfaces, 

Ann. Scient. Ec. Norm. Sup. 23 (1990), 469-494. 

A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, 

Ast6risque 66-67, Soc. Math. France (1977). 

D. Gaboriau, Dynamique des systbmes d'isomdtries et actions de groupes sur 

les arbres r6els, Th~se, Toulouse, June 1993. 

D. Gaboriau, G. Levitt and F. Paulin, Pseudogroups of  isometries of  ~ and 

constructions of R-trees, Ergodic Theory & Dynamical Systems, to appear. 

K.W. Gruenberg, ResiduM properties of  infinite soluble groups, Proc. London 

Math. Soc. 7 (1957), 29-62. 

H. Gillet and P. Shalen, Dendrology of  groups in low Q-ranks, J. Diff. Geom. 

32 (1990), 605-712. 

P. Gusmao, Groupes et feuifietages de codimension 1, Th~se, Toulouse, June 

1993. 

A. Haefliger, Groupoi'des d'holonomie et classifiants, in Structures transverses 

des feuilletages, Ast~risque 116 ,Soc. Math. France (1984), 70-97. 

A. Haefliger, Pseudogroups ofloca/isometries, in Proc. Vth Co11. in Differential 

Geometry (L.A. Cordero, ed.), Research Notes in Math 131, Pitman, London, 

1985, pp. 174-197. 

H. Imanishi, On codimension one foliations defined by closed one forms with 

singularities, J. Math. Kyoto Univ. 19 (1979), 285-291. 

M. Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31. 

G. Levitt, 1-formes fermdes singulibres et groupe fondamental, Inv. Math. 88 

(1987), 635-667. 

G. Levitt, Groupe fondamental de l'espace des feuilles dans les feuilletages sans 

holonomie, J. Diff. Geom. 31 (1990), 711-761. 

G. Levitt, La dynamique des pseudogroupes de rotations, Inv. Math. 113 

(1993), 633-670. 

G. Levitt, Constructing free actions on R-trees, Duke Math. J. 69 (1993)~ 

615-633. 

G. Levitt, On the cost of  generating an equivalence relation, preprint. 

G. S. Makanin, Equations in a free group, Math. USSR Izv. 21 (1983), 145- 

163. 



428 D. GABORIAU ET AL. Isr. J. Math. 

[Morl] 

[Mor2] 

[MS1] 

[MS2] 

[Paul 

[Raz] 

[Rim1] 

[Rim2] 

[Rim3] 

[Shal] 

[Sha2] 

J. Morgan, A-trees and their applications, Bull. Am. Math. Soc. 26 (1992), 

87-112. 

J. Morgan, Notes on Rips' lectures at Columbia University, October 1991, 

manuscript. 

J. Morgan and P. Shalen, Valuations, trees and degeneration of hyperbolic 

structures II, III, Ann. Math. 122 (1988), 403-519. 

3. Morgan and P. Shalen, Free actions of surface groups on R-trees, Topology 

30 (1991), 143-154. 

F. Paulin, A dynamical system approach to free actions on R-trees: a survey 

with complements, to appear in "Proceedings of the Haifa 1992 Conference on 

Geometric Topology", Contemp. Math., Amer. Math. Soc. 

A. A. Razborov, On systems of equations in a free group, Math. USSR Izv. 25 

(1985), 115-162. 

F. Rimlinger, Free actions on R-trees, Trans. Am. Math. Soc. 332 (1992), 

315-331. 

F. Rimlinger, ~t-trees and normalization ofpseudogroups, Experimental Math- 

ematics 1 (1992), 95-114. 

F. Rimlinger, Two-complexes with similar foliations, preprint (1992). 

P. Shalen, Dendrology of groups: an introduction, in Essays in Group Theory 

(S.M. Gersten, ed.), M.S.R.I Publ. 8, Springer-Verlag, Berlin, 1987. 

P. Shalen, Dendrology and its applications, in Group Theory from a Geometri- 

cM Viewpoint (E. Ghys, A. Haefliger and A. Verjovsky, eds.), World Scientific, 

Singapore, 1991. 


