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THE RANK OF ACTIONS ON R-TREES

BY DAMIEN GABORIAU AND GILBERT LEVITT

ABSTRACT. - For n > 2, let Fn denote the free group of rank n. We define a total branching index z for a
minimal small action of Fn on an R-tree. We show i < 2n - 2, with equality if and only if the action is geometric.
We thus recover Jiang's bound 2n - 2 for the number of orbits of branch points of free Fn -actions, and we extend
it to very small actions (i.e. actions which are limits of free actions).

The Q-rank of a minimal very small action of Fn is bounded by 3n - 3, equality being possible only if the
action is free simplicial. There exists a free action of Fs such that the values of the length function do not lie
in any finitely generated subgroup of R.

The boundary of Culler-Vogtmann's outer space Yn has topological dimension 3n - 5.

Introduction and statement of results

Various problems from geometry and group theory lead to isometric group actions on
R-trees. An R-tree is a path-connected metric space in which every arc is isometric to
an interval of R. See the surveys [Sh I], [Sh 2], [Mo] and the papers [AB], [CM] for
basic results about R-trees.

These actions on R-trees are most often small: no edge stabilizer contains a free
non-abelian subgroup. Following work of Rips, it is now known that hyperbolic groups
admitting nontrivial small actions on R-trees have nontrivial splittings (see [BF 2] for
precise statements and corollaries).

Small actions of a given finitely generated group G determine a closed subspace in
the space of all length functions on G. This subspace is often infinite dimensional [CL,
Theorem 9.8]. Bestvina-Feighn have proved a finiteness theorem for reduced simplicial
small actions [BF 1].

In this paper we consider actions of Fn, the free group of rank n. We obtain finiteness
results about branch points, rank, and Culler-Vogtmann's outer space. Our results apply
to small actions, and to very small actions.

Recall (Cohen-Lustig [CL]) that a small action of Fn on an R-tree is very small if for
every nontrivial g G Fn the fixed subtree Fix(^) is equal to Fix(^) for p > 2 (no obtrusive
powers) and Fix(^) is isometric to a subset of R (no fixed triods).

Outer space Yn consists of (projective classes of length functions of) free simplicial
actions of Fn, and its closure consists precisely of very small actions [BF 3]. In particular,
an action is very small if and only if it is a limit of free actions.
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Let T be a small F^-tree (i.e. an R-tree equipped with a small action of Fn). We always
assume that T is minimal (there is no proper invariant subtree).

Let x G T be a branch point (i.e. a point such that T \ {x} has at least 3 components).
In Part III we define an index i(x) in terms of the isotropy subgroup Stab(rr) and its action
on the set of directions 7ro(T \ {x}), by

i(x) = 2 rk Stab(aQ + vi(x) - 2,

where vi(x) is the number of Stab(a;)-orbits of directions with trivial stabilizer; it turns
out that i(x) G N.

The index i(x) depends only on the orbit 0 = Fn(x) and we define the index of T as

z(T)= ^ i(0).
OCT/Fr,

THEOREM III.2. - Let T be a small minimal Fn-tree. Then i(T) < 2n - 2.
If the action is very small, the index of every branch point is positive. We then get:
COROLLARY III.3. - Let T be a very small minimal Fn-tree. The number b of orbits of

branch points satisfies b <^ 2n — 2.
Another corollary is:

COROLLARY III.4. - Let T be a small Fn-tree. The stabiliser of any x G T has rank
at most n.

In the case of a free action, i(x) + 2 is the number of components of T \ {x}, so that
Theorem III.2 specializes to Jiang's theorem [Ji].

It is worth pointing out the analogy with actions of surface groups. Suppose T is an
R-tree with a minimal small action of 71-1 S, where E is a closed surface. By Skora's
theorem [Sk I], T is dual to a measured foliation T on E. Branch points of T come
from singularities of T and the Euler-Poincare formula for line fields on surfaces gives
the equality i(T) = -2^(S) (see Part III).

In the case of Fn, equality in Theorem III.2 holds if and only if the action is geometric
(compare [Du]). Roughly speaking, geometric means that the action is dual to a measured
foliation on a finite 2-complex (see Part II for a discussion). For instance a minimal
simplicial Fn -action is geometric if and only if every edge stabilizer is finitely generated.

There is a close connection between branch points and rank. This is best seen on
geometric F^-actions (not necessarily small). Let L be the subgroup of R generated by
the values of the length function t(g) = mmd(x^gx).

For a geometric Fn-action, the group L is finitely generated. Its rank r is called the rank
of the action (or of the length function). Equivalently T may be viewed as the completion
of a A-tree, with A C R a subgroup of rank r (see [Sh 2, §1.3.1]).

By studying the 2-group L/2L, we show (Corollary IV.3) the inequality

r <^ b + u — 1

valid for any geometric minimal Fn -action without inversions (the number b of orbits of
branch points is always finite). In particular we have r <: 3n - 3 for a geometric very
small action.
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If the action is not geometric, the group L needs not be finitely generated (this may
happen for free actions, see Example 11.7). Instead of rank we use Q-rank: the dimension
of the Q-vector space generated by L. Actions with low Q-rank have been studied
extensively ([GS], [GSS]).

THEOREM IV.4. - Let T be a very small minimal Fn-tree. The Q-rank of the action
satisfies TQ <_ 3n — 3. Equality may hold only if the action is free simplicial.

Given a finitely generated group G and an integer fc, the space of length functions on G
with Q-rank <, k has topological dimension at most k (Proposition V.I). We then get:

THEOREM V.2. - The boundary ofCuller-Vogtmann's outer space Yn has dimension 3n-5.
This improves the result dimY^ = 3n — 4 by Bestvina-Feighn [BF 3].
Theorem IV.4 also implies:

COROLLARY IV.5. - Let T be a very small Fn-tree with length function L Suppose
i o a = \i with a € Aut(Fn) and X G R4'. Then \ is algebraic, of degree bounded by
3n — 4. If T is geometric, then \ is an algebraic unit.

Such an i represents a fixed point for the action of a on Yn (compare [Lu]). In Example
11.7 we use a construction by Bestvina-Handel to get an example with A not an unit. The
corresponding action is free and does not have finite rank.

The theorems mentioned above are proved in Parts III, IV, V. Parts I and II may be
viewed as preliminary.

First recall the following construction due to Rips (see [GLP 1]). Let T be a minimal
Fyl-tree, and K C T a finite subtree (i.e. a subtree homeomorphic to a finite simplicial
complex). If K is large enough, the action of each generator ^ i , . . . ,^ of Fn defines a
partial isometry (pi : g^K H K —^ K H giK between nonempty closed subtrees of K.

In Part I we show how to associate a canonical geometric F^-tree Tjc to a system /C
consisting of a finite metric tree K and n partial isometrics ̂  : Ai —^ Bi between closed
subtrees of K (Theorem I.I). Similar constructions are known (see e.g. [GLP 2]), but they
often require an additional hypothesis to ensure that a certain space is Hausdorff.

In our particular setting this problem does not exist. One consequence, used in the proof
of Theorem III.2, is that orbits of branch points of Tjc are created only by vertices of the
finite trees K and Ai (% = 1, . . . , n). Another consequence, derived in Part V, is a simple
proof of the following result announced by Skora [Sk 3]:

THEOREM V.4. - Every action of Fn may be approximated by simplicial actions.
Returning to T as above, we associate an F^-tree TK to every finite subtree K C T.

As K grows bigger, these trees approximate T. We define T to be geometric if T equals
TK for some K (see Part II for equivalent definitions).

If T is not geometric, it is the strong limit (in the sense of [GS]) of a sequence of
geometric actions. This allows us to prove Theorems III.2 and IV.4 first for geometric
actions, and then to "pass to the limit".

In Part II we give examples of geometric and non-geometric actions. In particular we
take advantage of the non-completeness of certain minimal Fn -trees to construct a lot of
non-geometric actions by taking "free products" of actions using a basepoint not in the
tree but in its completion (Example 11.6).
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I. The R-tree associated to a system of isometrics

Let G be a group. A G-tree is an R-tree T equipped with a left isometric action of G.
Two G-trees are considered equal if they are equivariantly isometric.

A finite tree will be an R-tree homeomorphic to a finite simplicial complex. A subtree
of an R-tree is a finite tree if and only if it is the convex hull of a finite subset.

A map j : T —^ T ' between R-trees is a morphism if every segment in T may be
written as a finite union of subsegments, each of which is mapped isometrically into T ' . If
j is an equivariant morphism between G-trees, with length functions i and V , then i ̂  V
since j does not increase distances.

We let Fn be the free group on n generators ^ i , . . . ,^. We write \g\ for the length of
g G Fn relative to this generating set.

We consider systems 1C consisting of a finite tree K and n isometries ^ : Ai —^ Bi
between closed nonempty subtrees of K. We let S be the (finite) set consisting of all
vertices of the trees K, A,, Bi (1 < i < n).

For example, take K to be a finite subtree in an F^-tree T, with K D giK -^. 0 for
i = 1 , . . . , n. Then define (pi as the restriction of the action of gi to Ai = g^K D K.

THEOREM I.I. - Let /C be as above. There exists a unique Fn-tree Tjc such that:
(1) Tjc contains K (as an isometrically embedded subtree).
(2) if x C Ai, then gix = (pi{x).
(3) every orbit of the action meets K, indeed every segment ofTjc is contained in a finite

union of images wK, w G Fn.
(4) if T ' is another Fn-tree satisfying (1) and (2), there exists a unique equivariant

morphism j : T^ —^ T ' such that j{x) = x for x G K.

Remark 1.2. - If j is as in (4), it is surjective if and only if T ' satisfies (3).

Remark 1.3. - Before proving Theorem I.I, we give a geometric description of T^. Let
r be the Cay ley graph of Fn relative to ^ i , . . . ,^. We construct a foliated 2-complex S
sitting above F, as follows. Place a copy K{g) of K above each vertex g of F. Above
each edge g - ggi, place a strip A, x [0,1] foliated by {*} x [0,1]. Then glue A, x {1}
to K(ggi) using the inclusion of Ai into K, and glue -Ai x {0} to the subtree of K(g)
corresponding to B,, using (pi (i.e. identify (x,0) G A, x [0,1] to ^(rc) G K(g)). The tree
T]C is the space of leaves of this simply connected foliated 2-complex S. The action of
Fn on T/c is induced by the natural action of Fn on F.

Proof of theorem I.I. - Recall that a pseudodistance on a set X is a symmetric map
6 : X x X —> R+ satisfying the triangle inequality, with 6(x,x) = 0 Vrr. The relation
"6{x,y) = 0" is a (possibly nontrivial) equivalence relation K on X, and 6 induces
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a genuine distance d on the quotient set Y = X/li. We call (V, d) the m^nc ^C6?
associated to (X^8).

Now suppose T ' is an F^-tree satisfying (1) and (2). Write d! and dp for distance
in T ' and AT respectively. Let 6 ' be the pseudodistance on K x Fn defined by
S f ( ( x , g ) , ( y , h ) ) = d\gx,hy).

A simple computation, based on (1) and (2), shows the inequality

(*) 8\(x,g),(y,h)) ^ mf^^,^) + ̂ (^;(^),^-i) + .. .
+ ̂ (^K^)^!) + ̂ «1^!)^)}

where the infimum is taken over all words g^ .. .g^ representing h~^g (with ej = ±1)
and all points xj in the domain of (^J.

Indeed we write:
6\{x, ̂  (^ h)) = d'(^, ft?/)

^d^h-^x^y)

=d/(<l...^p^)
< d\g^ . . . ̂  ̂  ... ̂ ) + d\g^ ... g^x?^ ... ̂ ^-i)

+ ... + d\g^g^x^g^x,) + ̂ (^^i^)
< dK^X.Xp} + dK(^(Xp),Xp-^) + . . .

+ ̂ (^(a;2)^l) + M<1^!)^)-

With this as a motivation, define 6 ( ( x ^ g ) ^ (y, h)) as the infimum in the right hand side
of the above inequality (*). This gives a pseudodistance on K x Fn. It induces (IK on each
K x {g}, and it is invariant under the natural action of Fn given by h{x^g) = [x^ hg).

It is important to note that the infimum is always achieved: we need only consider the
reduced word g^ ... g^ representing h^g, and then the infimum is taken over a fixed
number of points xj varying in compact sets.

More explicitly, let Zp be the point in the domain of ^p closest to x, let Zp-^ be the
point in the domain of (ft£•p~l closest to (^(^o), and so on. Then:••- ' ip—i ' ip \ f/'

dK^x.Xp) +dx(^J(rrp),a;p-i)
= dK^x.Zp) + dK^Zp.Xp) +d^(^J(a;p),a;p_i)
== d K ( x , Z p ) + dK(^(zp),(p^(xp)) + dK(^(xp),Xp^)
^ d^x^Zp) +d^(^J(^),^p-i)

and induction on p = \h~lg\ yields

(**) 6((x, g ) , {y, h)) = d^x, z?) + ̂ (^; (^), ̂ -i) + . . . + dj<«1 (^i), y).

We claim that the metric space Tjc associated to (K x F n ^ S ) is an R-tree. Since Tjc is
connected (because Ai x {ggi} and Bi x {g} have the same image in T^), it suffices by [AB,
Theorem 3.17] to show that any 4 points ui = (xi, hi) satisfy the 0-hyperbolicity inequality:

S(u-i,u^) + 6{u^,u^) < max{5(ni,n3) + 8(u'z,u^),8(u^,u^) + 8(u^,u^)}.
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This is clear if the elements fai, h^,h^, h^ are equal, since K is a tree. In general, we
consider them as 4 points in a simplicial tree, namely the Cayley graph F of Fn relative
to ^ i , . . . ,^. Let Fo be the finite subtree they span. Assume that some terminal vertex of
Fo, say fai, is distinct from the other three elements ^2,^3,^4. Then the reduced words
representing /ii, h^h^, h^h^, h^h^ all end with the same letter, say g^. Let z be the
point in Ai closest to x^ We have 6(u^Uk) = d^x^z) + ^((^i(^)^i^r1),^) for
k = 2,3,4, and 0-hyperbolicity follows by induction on the size of Fo. We leave to the
reader the remaining case, when ^1,^2, ^3,^4 are equal in pairs.

The R-tree Tjc obviously satisfies (1) and (2), with K embedded in Tjc as K x {1}.
Furthermore K meets every orbit.

Since K D g^K / 0 for i = 1 , . . . , n, any segment in T)C joining a point of gK to a
point of hK, with hg~1 = g^ .. .^p, may be covered by a finite union of images wK,
namely ̂  (^)^ (^;_~,1^)J^P • • . «' • "9^9}K. Applied to an arbitrary F,-tree
T ' satisfying (1) and (2), this argument shows that the union of all orbits meeting K
is a subtree (i.e. it is connected). This means that in proving (4) we may assume that
T ' also satisfies (3).

Define 6 ' on K x Fn as in the beginning of the proof. The map (x, g) i—^ gx identifies T '
with the metric space associated to (K x Fn, 6 ' } (while T^ is associated to {K x Fn, 8)).
Since 6 ' < 6, the identity of K x Fn induces a continuous equivariant map j : Tjc —> T ' .
This j induces the identity on K and is a morphism because any segment in Tjc is contained
in a finite union of images of K. Finally, uniqueness of Tjc is easy to check using (4). D

Since the infimum defining 8 is always achieved, we have the following facts about T^:
PROPOSITION 1.4.
(1) two points {x, g) and (y, h) in K x Fn define the same point in T)C if and only if one

can write y = ̂  . . . y^{x) with g^ ... g^ = h^g.
(2) given x, y G K and g C Fn, one has y = gx if and only if one can write

V = <' • • • ̂ (tr) with 9 = 9?, .. .<'•
(3) i f ^ E F n is represented by a cyclically reduced word (f^ ... g^, then

^(7)- min ,.{^(^,<l(^l))+^(a;l,^2(^2))+...+^(^-l,^p(^))}. D
X j (^domy.3

Remark. - In the situation of Assertion 2, note that all points g^. . . . g ^ x (1 <, j < p)
belong to K.

We now prove a few other properties of T^.

PROPOSITION 1.5. - If ̂  G Fn is represented by a cyclically reduced word, then its fixed
point set Fix^y C Tjc is contained in K.

Proof. - Let a e Tjc be a fixed point of 7. Choose a representative {x,g) G K x Fn of
a with the length \g\ minimal. We shall identify g and the reduced word representing it.
We assume \g\ > 0, and we argue towards a contradiction.

Since {x,g) and (x,^g) both represent a. Proposition 1.4 (Assertion 1) lets us
write x = (p^...^(x) with <1...^; = g~^g (and <1...^; reduced). Now
(^El{x),gg^) and (^(aO,^^) also represent a, so that g cannot end with ^-£1 or

4° SfiRIE - TOME 28 - 1995 - N° 5



THE RANK OF ACTIONS ON R-TREES 555

g^ (by minimality of \g\). It follows that gg^ .. .g^g~1 is the reduced word representing
7. This means that 7 cannot be represented by a cyclically reduced word. D

If 7 7^ 1 is not cyclically reduced, then Fix7 is contained in some hK. We then get:

COROLLARY 1.6. - For any 7 / 1 in Fn, the set Fix^ C T)C is compact. Ifj \ T ^ — ^ T ' is
a morphism as in Theorem I . I , the restriction ofj to Fix^ is an isometry. D

COROLLARY 1.7. - Suppose the action ofFn on T^ has no global fixed point. Then its length
function is not abelian fi.e. it is not the absolute value of a homomorphism from Fn to H).

Proof. - Otherwise, commutators would have non-compact fixed point sets (see e.g.
[CM, 2.2 and 2.3]). D

Recall that S is the finite set consisting of all vertices of the trees K, A^, Bi (1 ^ i <^ n).

PROPOSITION 1.8. - If x G Tjc is a branch point, its orbit contains a point of S. The
action of the isotropy subgroup Stab{x) C Fn on the set of directions ^(TK; \ {x}) has
only finitely many orbits.

Proof. - We start with a general argument. Suppose [ x ^ x ' } C TSc is a segment with
[ x ^ x ' } n K = {x}. Some nondegenerate subsegment [rr,rri] is contained in some wK. We
choose rci / x and w so that p = \w\ is minimal. By Proposition 1.4 (Assertion 2) we
can write x = y^1 . . . ̂ p(^), with y G K and w = g^ ... g^. Since [x^ x-^} D K = {x},
minimality of p implies that the segment [y,yi] = w^^x.x^}) C K meets the domain
of (^P only at y . In particular y G S.

This argument shows that the orbit of any branch point x G Tjc meets S: since K
meets every orbit we may assume x G K, and if x is not a vertex of K then there is a
segment [ x ^ x ' } as above. The argument also implies the second assertion since the number
of possible points y G S, and possible germs of segments [?/, ^/i] C K, is finite. D

COROLLARY 1.9. - There are only finitely many orbits of branch points in Tjc. n

Remark. - The number of orbits of branch points may be bounded in terms of n and the
complexity of K. Our goal for very small actions will be to find a bound involving only n.

Corollary 1.9 implies that the action on Tjc is a J-action in the sense of [Le 3]. It
follows that the closure of any orbit is a discrete union of closed subtrees. If no orbit is
discrete, then every orbit is dense.

We shall use the following fact:

PROPOSITION 1.10. - Suppose Fn acts on Tjc wth every orbit dense. If the action is small,
then every edge stabiliser is trivial.

This is well-known (Rips, [BF 3]), but we sketch a proof. It is based on a theorem
by Imanishi.

Proof. - If the result is false, let E be an edge with stabilizer Z. By shortening E and
applying elements of Fn, we may assume that every subarc of E has the same stabilizer,
and a generator g of Stab(2?) is represented by a cyclically reduced word g^1 ... g^. Note
that E C K by Proposition 1.5.

0

Choose x € E such that the orbit Fn(x) contains no point of S. Observe that Fn{x) meets
K in an infinite set: otherwise Fn{x) would be discrete. Imanishi's theorem (see [GLP 1,
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Theorem 3.1]) then implies that Fn(x) H K accumulates on x. [Theorem 3.1 of [GLP 1]
is stated for systems of isometries on a multi-interval, but it also holds on a finite tree]

o
Consider h G Fn such that hx / x belongs to E. Then hgh~1 stabilizes some

neighborhood of hx in E, so that hgh~1 is a power of g. It follows that h commutes with
g. Since g is cyclically reduced, this leads to a contradiction for hx closer to x than any
^; . . .^ ; (^) , j=2, . . . ,p . D

Recall that an J^-tree with no global fixed point contains a unique minimal invariant
subtree, the union of all translation axes (see [CM]). The following fact will be used in
Example 11.6, but not elsewhere.

PROPOSITION 1.11. - Suppose the action of Fn on Tjc has no global fixed point. Then the
minimal invariant subtree Tmin is closed in T^.

Proof. - Assume Tmin is not closed. Then there is a segment [x, y] with [x, y] H Tmin =
(x,y}. Changing y and applying an element of F^, we may assume [x,y] C K. We thus
see that the tree K ' = Tmin D K is not closed in K.

It has finitely many limit points a; i , . . . ,Xk. Let K " be the tree obtained from K ' by
removing open segments of equal length (a;i, ^ / i ) , . . . , (xj,, Vk) disjoint from 5. Since Tmin
is connected, we have K ' D A, / 0 for each i. The same is then true for K " . This implies
that the union of all orbits meeting K" is a subtree T " . By Proposition 1.4 (Assertion
2) the intersection of T" with K ' consists only of K" since no ̂  can send a point
of some { x j ^ z / j ) into K ' . We thus get an invariant subtree properly contained in Tmin, a
contradiction. D

Remark. - The action of Fn on Tnnn is the action associated to K ' , ^\\K' ^ . . . , ̂ n\K'.

COROLLARY 1.12. - Suppose the subgroup Fp C Fn generated by ^ i , . . . , g? acts with no
global fixed point. Then its minimal invariant subtree Tmin(-Fp) is closed in T^.

Proof. - The union of all Fp -orbits meeting K is a subtree T(Fp), and the action of Fp
on T(Fp) is the action associated to (K, ( ^ i , . . . , ̂ p). The set Tmin(-Fp) H K is closed in
K (by Proposition 1.11), hence also in T)C (by an argument given above). D

II. Geometric and non-geometric actions

Let T be a minimal I^-tree, with length function i. Let K C T be a finite subtree such
that K H giK / 0 (% = 1 , . . . , n). We consider the system /C = (AT, (^)i=i,...,n), with ^
the restriction of the action of ^ to g^K H 7<r (if T = Tjc, this new /C equals the original
/C because ̂ -1^ H K == A, by Assertion 2 of Proposition 1.4: notation is consistent).

Theorem I.I associates to /C an F^-tree T^, with a surjective morphism jj< : Tjc -^ T.
We shall usually write TK instead of Tjc, and we denote by IK the length function of TK.
Recall that IK ^ i and ̂  is not abelian (Corollary 1.7).

If the action on T is free (resp. small, resp. very small), so is the action on TK'. this is
clear for free and small actions, and it follows from Corollary 1.6 for very small actions.

The tree TK is not necessarily minimal, but we can find arbitrarily large subtrees K with
TK minimal, as follows. Fix XQ G T. It belongs to some translation axis A^ (see [CM]).
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Choose an integer p > |7|, and define Kp as the convex hull of the set {gxo', \g\ < p}
(note that by minimality T is the increasing union of the subtrees Kp). Since p >, |7|, all
images of XQ by terminal subwords of 7 belong to Kp and it follows that the distance
between XQ and 73:0 is the same in TK^ as in T. The point XQ thus belongs to the axis of
7 in T^p. Being the convex hull of the orbit of XQ, the F^-tree TK^ is minimal.

Now consider two finite subtrees K , K ' of T, with K C K ' . Theorem I.I provides
an equivariant morphism J K , K ' '• TK -^ T K ' . so that the trees TK form a direct system
of Fn -trees.

We now prove the well-known fact that this direct system converges strongly towards T
in the sense of [GS]. This amounts to showing that, given a segment I in some TK, there
exists K ' D K such that the set J K , K ' ( I ) C TK' is mapped isometrically into T by J K ' '
Choose finitely many elements hj C Fn such that I is covered by the trees hjK. Letting
m = max \hj\, take any K ' containing all images of K by words of length < m.

To be more concrete, T is the strong limit of the sequence of minimal trees TK
constructed above. The fact that the limit is strong is often used in the following way.
Any finite subtree A C T may be lifted isometrically to TK^ for p large: there exists a
subtree Ap C TK^ such that the restriction of J K p '' TK^ —> T is an isometry. Furthermore,
given g G Fn and lifts A^, A!^ of A and gA respectively, there exists q > p such that
A79 == gA'1, where A9 and A'9 denote the images of Av and Alp in TK . In particular
f-K,{g) = i{g} for q large.

Instead of viewing T as the strong limit of a sequence Tj<p, we can also choose an
increasing continuous family K(t) (t G R^, with T = UK(t), and view T as the strong
limit of the system TK^}' The following properties then hold.

Fix g G Fn, and consider the function Og : t i—^ ^(t)(^). It is non-increasing, and it
is constant for t larger than some to (depending on g). Furthermore Og is continuous: by
Proposition 1.4 (Assertion 3) we can bound \(Tg(t^) - crg{t^)\ by \g\ times the Hausdorff
distance between K(t^) and K(t<z).

Now we prove:

PROPOSITION 11.1. - Let T be a minimal Fn-tree. The following conditions are equivalent:
(1) There exists 1C = (K, y ? i , . . . , (prz) such that T = Tjc.
(2) There exists a finite subtree K C T such that T = TK fi.e. JK : TK —> T is an

isometry).
(T) There exists a finite subtree K C T such that f^K' = i for every K' C T containing K.
(3) T can only be a strong limit in a trivial way (ifT is the strong limit of a sequence of

F^-morphisms f p ' . T p — ^ Tp+i be^een minimal trees, then fp is an isometry for p large).

Proof.
2=^1 by definition.
1=^2 because (T^K = Tjc (see the above remark about consistency of notation).
2=^ T because i = IK and IK > ^ K ' > i'
T=> 2: Take K ' containing K such that TK' is minimal. Then TK' and T are equal

because they are minimal trees with the same, non-abelian, length function ([AB], [CM]).
3=^2 because T = TK^ for p large.
To prove 1=^3, suppose that T == Tjc is the strong limit of a sequence fp. For p large

enough we may lift K isometrically to a subtree K^ of Tp (see above). For i = 1 , . . . , n,
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let Af and Bf be the subtrees of A^ corresponding to A, and Bi. Since ^A, = B, we
may take p even larger so as to ensure ^Af == Bf, and Theorem I.I yields a morphism
j : T —^ Tp. It follows that the morphism from Tp to the limit tree T is an isometry, and
the strong limit is trivial. D

DEFINITION. - A minimal action of Fn is geometric if it satisfies conditions 1-3 above.
Using condition 3, we see that being geometric or not does not depend on the particular
set of generators ^ i , . . . , gn.

Example 11.2. - We have seen that every minimal action of Fn is the strong limit of a
sequence of geometric minimal actions.

Example 11.3. - The non-simplicial free Fs-actions constructed in [Le 2] are geometric.

Example 11.4. - An Fn -action with an abelian length function is not geometric by
Corollary 1.7 (compare [Le 4]).

Example 11.5. - It may be shown that a minimal simplicial Fn-action is geometric if
and only if every edge stabilizer has finite rank. In particular, small simplicial actions
are geometric.

Example 11.6: non-geometric free products of actions
Consider finitely generated free groups Gi, G^ acting non-trivially on R-trees Ti and

T'2. Fix basepoints pi € Ti. One can combine these two actions ([Sk 2], [CL]), obtaining
an R-tree T with an action of Gi * G?2. If the actions on T, are minimal (resp. free),
so is the action on T. More generally, the action on T is minimal as soon as no proper
Gi -invariant subtree of Ti contains pi.

Now let TI be a minimal Gi-tree. Assume that branch points are dense in T\ (this
happens for instance for the free Fs-actions of [Le 2], or for certain very small ^-actions).
Then segments are nowhere dense closed subsets, and by Baire's theorem T\ is not
complete as a metric space since it is a countable union of segments.

Choose a point p\ in the completion T\ but not in Ti, and let T[ C Ti be the smallest
Gi-invariant subtree containing pi. Combine the Gi-tree T[ with some minimal C?2-tree
TI (e.g. G2 = Z, T2 = R). The resulting (Gi * G^-tree T is minimal, but by Corollary
1.12 it is not geometric since 7i is not closed in T.

Example 11.7: a free F^-action "with L infinitely generated
Bestvina-Handel have shown how iterating an automorphism of Fn may lead to a non-

simplicial free Fn-action. An explicit example is worked out in [Sh 2]. It is not geometric
because it is a nontrivial strong limit (compare [BF 3]). We give an example where iterating
an automorphism of Fs leads to a free action such that the values of the length function
do not lie in any finitely generated subgroup of R.

Let a be the automorphism of Fs given by a(a) = a6~1, a(&) = bac~1, a(c) = ca~3.
Let A > 1 be the largest eigenvalue of the associated matrix

/I 1 0\
A= 1 1 1

\3 0 \]
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and let (^,^,w) be a positive eigenvector.
View Fs as the fundamental group of a wedge of 3 circles of respective lengths u, v, w,

and let t : F^ —^ R+ be the corresponding length function (associated to the action of
F^ on the universal covering).

Since l(ah) < M{h) for every h G Fn, each sequence

W = A-^(a^)

is non-increasing. Taking its limit as p -^ +00, we get a function ̂  : F^ —. R-^ which is
the length function of a very small action (provided it is not identically 0).

Our discussion so far holds for any automorphism of F^ (or even of Fn), as long as the
matrix A has a positive eigenvector. We now use the special form of a.

First of all, arguing as in [Sh 2], one shows that each sequence lp(g) is eventually
constant, so that ^oo(^) is positive for every nontrivial g G Fn. Thus ^oo is the length
function of a free action.

Now the key feature of our example is that A is not an algebraic unit, because the
determinant of A is 3 (it is always an odd integer because A is invertible mod 2). This
implies that Z[A,A~1] is not a finitely generated subgroup of R. Since i^o satisfies the
relation

^(a±lg)=\±l^(g^

the subgroup L C R generated by the values of ̂  is a Z[A, A-^-module and therefore
is not a finitely generated group.,

Remark 11.8.
- It is easy to check that a~2 is a positive automorphism. On the other hand a could

not be positive, since detA == ±1 if a is positive.
- One can show that the i^-acdon just constructed has only one orbit of branch points.

These branch points have index 1 (i.e. T \ {x} has 3 components).
- The second author has proved that very small Fn -actions with Q-rank 3n - 4 have

finite (Z-)rank.

III. Counting branch points

Let T be a minimal small F^-tree. Given x G T, a direction d from a; is a component
of T \ {x}, or equivalently a germ of edges issuing from x. The isotropy subgroup
Stab(a;) C Fn acts on the set of directions from x. The stabilizer Stab(d) of a direction
d is either trivial or infinite cyclic.

Let v^x) be the (presumably infinite) number of Stab(rc)-orbits of directions from x
with trivial stabilizer. We define the index

i(x) =-- 2 rk Stab(rr) + v^(x) - 2.

Theorem III.2 will imply that i(x) is finite. If Stab(a;) is trivial, then i(x) + 2 is the
number of components of T \ {x}.
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This definition may be motivated by the analogy with surface groups mentioned in the
introduction. Suppose T is a measured foliation on a closed surface S, whose singularities
are ks -prong saddles (ks ^ 3). Then ̂ (^ - 2) = -2^(S) by the Euler-Poincare formula

s
[FLP, p. 75]. A branch point x in the Ti-iS-tree associated to 7 corresponds to a set A
of saddles linked by saddle connections. Setting i(x) = y^(fcg - 2) leads to the formula

seA
above, since v^x) is the number of infinite separatrices issuing from saddles in A while
Stab(rr) is isomorphic to the fundamental group of the 1-complex whose edges are the
saddle connections.

PROPOSITION III.l. - The index i(x) is always non-negative. Ifi(x) > 0, then x is a branch
point. Conversely, if the action is very small, then every branch point has index >_ 1.

Proof. - We fix x G T, and we distinguish three cases according to the rank of Stab(a;).
If Stab(a;) has rank >_ 2, then i(x) > 2. Since the action of Stab(a;) on the set of

directions has an infinite orbit, x is 21 branch point.
If Stab(rr) is trivial, then i(x) = v-^ (x) — 2, with v-^ (x) equal to the number of components

of T \ {x}. Minimality of the action implies v\{x) > 2. We thus have i{x) > 0, and
i(x) > 0 if and only if a; is a branch point.

If Stab(a:) ^ Z, then i(x) = vi(x) is non-negative. If i(x) > 0, we deduce that a; is a
branch point as in the first case. Now we assume that i(x) = vi(x) is 0 and the action is
very small, and we prove x is not a branch point.

Consider a direction from x. The inclusion from its stabilizer into Stab(a;) is an
isomorphism because there are no obtrusive powers. This means that every element of
Stab(.r) acts on 7ro(T \ {x}) as the identity. By the no-triod condition, there cannot be 3
distinct directions from x, so that x is not a branch point. D

Remark. - The proof shows that a branch point x has index 0 if and only if Stab(a;) c^ Z
and ^i(rr) = 0.

Clearly i(x) = i{x'} if x and x ' belong to the same F^-orbit 0, and we write
%(0) = i(x). We define the total index of T as

i(T)= ^ z(0).
O^T/Fr,

THEOREM III.2. - Let T be a minimal small Fn-tree.
(1) // T is geometric, then i(T) = 2n - 2.
(2) IfT is not geometric, then z(T) < 2n - 2.

COROLLARY III. 3. - IfT is a minimal very small Fn-tree, the number of orbits of branch
points is at most 2n — 2. D

COROLLARY III.4. - IfT is a minimal small F^-tree, the stabiliser of any x e T has rank
at most n. D
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Proof of theorem III.2.
First assume that T = Tjc is geometric. Given a finite tree H (such as K or A,), and

x G H, we denote z^(a;) the valence of a; in H. Then:

(1) ;^(^(^-2)=-2.
xGH

Fix an F^-orbit 0 C T^. The interesting case is when 0 contains a point of S (since
otherwise i(0) = 0 by Propositions 1.8 and III.l), but for now 0 may be arbitrary. We
define a "Cayley graph" OK as follows. Vertices of OK are the points of 0 belonging to
K (recall that K meets every orbit). There is an edge labelled gi from z to ^pi(z) whenever
z G Ai. Assertion 2 of Proposition 1.4 implies that OK is connected.

We define the weight w(e) of an edge e labelled gi as the valence of its origin z in Ai.
All but finitely many edges have weight 2.

Next we define a "blown-up" 1-complex O K ' Vertices of OK will be directions, viewed
as germs of edges. If x G K, we shall distinguish between directions from x in K or in T^.

To define OK, we start from OK, replacing each vertex x of OK by UK^X) vertices
representing directions d from x in K, and replacing each edge e by w(e) edges in the
obvious way (these edges in OK carry the same label and orientation as e). Let TT be the
natural projection from OK to OK-

LEMMA III.5. - Fix x e 0 H A".
(1) The fundamental group of OK is isomorphic to Stab{x).
(2) The set of components 0\ of OK is in one-to-one correspondence with the set of

orbits under Stab(x) of directions d from x in T^.
(3) The fundamental group of a component 0\ is isomorphic to the corresponding

isotropy subgroup Stab(d), hence to {1} or Z.

Proof. - There is a natural homomorphism p : TTI^OK^) —^ Fn, where ^(7) is the
product of labels of edges crossed by a loop 7 (taking orientation into account: write gi
if the edge is crossed from z to (pi(z) and g^~1 otherwise). Clearly this homomorphism is
injective and takes values in Stab(rr). By Proposition 1.4 (Assertion 2), its image is the
whole of Stab(a;). This proves the first assertion of the lemma.

Now consider a component 0\ of OK' A vertex of 0\ is a direction do m K, at a point
y G 0 H K. Applying any g G Fn taking y to x, we get a direction d from x in T^. The
orbit of d under Stab(rc) is independent of the choice of either do or g , and we obtain a
map $ from components of OK to orbits of directions from x in T^.

The argument used in the proof of Proposition 1.8 shows that $ is onto. To prove
injectivity, suppose that do, do are directions in K that correspond to directions d,d' in
the same Stab(a;)-orbit. Then some g G Fn maps do to do- Assertion 2 of Proposition 1.4
implies that do and do belong to the same component of OK'

Finally, the proof of Assertion (3) is similar to that of Assertion (1). D
Thanks to Lemma III.5 we can now deduce properties of T from combinatorial properties

of finite subgraphs of OK and OK • Let Q be a finite connected subgraph of OK containing
every vertex belonging to S and every edge of weight / 2 (if there are any). Let Q ' C OK
be the preimage Tr"1^).
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By Proposition 1.8 and Lemma III.5, the 1-complex 0'^ has finitely many components,
each with first Betti number 0 or 1. Enlarging Q if necessary, we may assume that 71-1 <?'
generates the fundamental group of every component of 0'^.

Note that in general the intersection of Q' with a given component of 0^ need not
be connected. These intersections are connected, however, if 71-1̂  generates Ti-iO^, since
Q then contains any embedded path in OK with endpoints in Q. It is true that TT-^OK is
finitely generated, but we do not know it yet.

In any connected finite 1-complex we have the formula:

(2) 1 — rk TTi == (I vertices — ((edges.

Applying it to each component G'j of Q' and summing up we get:

^(l-rk7n^.)= ^ UK(X)- ^ w(e),
3 x^.V{G} e€E(G)

denoting V and E the set of vertices and edges respectively.
Subtracting formula (2) applied to Q and multiplied by 2, we obtain:

(3) 2 rk7r i0 -2+^( l - rk7 r i^ )= ^ (^) - 2) - ^ (w(e) - 2).
3 xeV{G) eCE{G)

The right hand side is independent of Q (only finitely many terms may be nonzero), while
every term (1 - rk T^iQ'j) is non-negative. It follows that rk TT^G is bounded, in other
words TT-^OK is finitely generated.

We may then assume that 71-1̂  generates Ti-iO^, thereby ensuring that a given component
of O'K contains only one Q'j (see above). By Lemma III.5 this implies that the left hand
side of (3) equals %(0), so that we have proved:

z(0)= ^ (^)-2)- ^ (w(e)-2).
XCV(OK) e^E{OK)

If 0 does not meet 5, the right hand side is 0 and %(0) = 0. For the other orbits we
recall that the weight of an edge labelled gi is the valence of its origin in A^, and we write:

(4) i(0)= ^ (^)-2)-f; ^ (^(^)-2).
x€Or\K 1=1 xeOnAi

Summing up and using (1) we get the required equation:

^ %(0)=-2+2n.
OCT/Fr,

This completes the proof of Theorem III.2 when T is geometric. From now on we
assume that T is not geometric (compare [Du, Theorem 5]).

Choose a base point XQ G T, and let Kp be the convex hull of {gxQ', \g\ <, p}.
Recall from the beginning of Part II that TK^ is a sequence of minimal small Fn -trees
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converging strongly to T. For convenience we write Tp instead of T^p, and we denote
jp the morphism Tp —> T.

Let x be a branch point of T, and k <^ i(x) an integer (if we knew that i(x) is finite,
we would simply take k = i(x)). We are going to show that, for p large enough, there
exists a lift x ' C j^^x) with i{x') > k. This will prove i(T) < 2n - 2 (note that lifts x '
and y ' are in distinct orbits if x ^ y are in distinct orbits).

Choose f a i , . . . , hq G Stab(a;) belonging to a free basis, and directions d i , . . . , dr from
a; with trivial stabilizers, in distinct Stab(a;)-orbits, with 2q + r — 2 = k. Because of strong
convergence, it is possible for p large to lift x to x ' G Tp in such a way that ha fixes
re' (a = 1, . . . , ( /) . Similarly we may assume that d^ lifts to a direction d^ from ^/ in
Tp ((3 = 1,... ,r). Clearly v^x') > r. On the other hand jp induces an injection from
Stab(a/) into Stab(rc) whose image contains f a i , . . . , hq. Since the subgroup generated by
/ ^ i , . . . , hq is a free factor of Stab(.r), we get rkStab^7) >_ q and i ( x ' ) ^ k. This shows
the existence of x1', hence the inequality %(T) <_ 2n - 2.

Now we assume %(T) = 2n - 2 and we argue towards a contradiction (for T
non-geometric). We assume that the basepoint XQ is a branch point.

Consider B C T containing one point from each orbit with positive index. For
x G B choose a basis h\^...^hq of Stab(rc) and directions d i , . . . , c^ as before with
2q + r — 2 = i{x). Choose p so that we can associate x ' G Tp as above to each x e B.
Also make sure that a;o is a branch point of Kp.

Since %(Tp) = ^(T), the orbit of every branch point of Tp with positive index contains
some x ' . Furthermore every direction from x ' with trivial stabilizer is Stab^^-congruent
to some d^.

The morphism jp is not an isometry. Thus two distinct germs of edges 61,62 at some
y G Tp are carried by jp onto the same germ at jp{y). We show that this leads to a
contradiction.

If y is a branch point with positive index, previous remarks imply that e\ and 62 both
have nontrivial stabilizer. Since ei and 62 get identified in T, the union of their stabilizers
generates a cyclic group, so that e\ U 62 is contained in some Fix7 C Tp. This contradicts
Corollary 1.6.

If y is a branch point with index 0, then again 61 and 62 both have nontrivial stabilizer
(see the remark after the proof of Proposition III.l), and the argument is the same.

If y is a regular point, then 61 U 62 is contained in some wKp: otherwise y would belong
to the orbit of a terminal vertex of Kp, hence to the orbit of the branch point XQ of Tp.
We have again reached a contradiction since the restriction of jp to wKp is an isometry.D

Remark 111.6. - The total index of a very small minimal F^-tree is at least 1. As
mentioned in Remark 11.8, the free Fs-tree of Example 11.7 has index 1. There exist small
F'2-actions with total index 0.

IV. Bounding the rank

Let G be a finitely generated group. Let T be a G-tree, with length function
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Let L be the subgroup of R generated by the values of L The Q-rank FQ (of the action,
or of the length function) is the dimension of the Q-vector space L (g)z Q generated by
L. The Z-rank (or simply rank) r is the rank of the abelian group L. Both ranks may be
infinite. If r is finite, then rq = r and L/2L is isomorphic to (Z/2Z)7'. A minimal action
is simplicial if and only if it is topologically conjugate to an action with r = 1.

Our main interest will be in very small Fn -actions, but for now we only assume that
T ^ R is a minimal G-tree with non-abelian length function. Define A as the subgroup
of R generated by distances between branch points. It is the smallest subgroup A c R
such that r may be viewed as the completion of a A-tree (see [Sh 2, §1.3.1], or "base
change" in [AB]).

We note the inclusions

2A c L C A,

which imply that we may use A instead of L when computing VQ and r.
The second inclusion is obvious since we assume T ^ R. The first one comes from

[AB, Theorem 7.13 (c)]. Here is a proof based on the fact that, in a minimal G-tree
with non-abelian length function, every segment is contained in some translation axis (see
Lemma 4.3 of [Pa]). Given two branch points a, 6, there exists a translation axis A^ (resp.
Ap) containing a (resp. b) and disjoint from the open segment (a, 6). The well known
formula ^(a/3) = ^(a)+^(/3)+2d(a, b) (see e.g. [Pa, Proposition 1.6]) then yields 2A C L.

We shall say that g e G acts as an inversion if it interchanges two distinct points of
T. We thank the referee for pointing out that the following result applies only to actions
without inversions (unless we count centers of inversions as branch points). Of course a
very small ^-action has no inversion.

PROPOSITION IV. 1. - Let T / R be a minimal G-tree with non-abelian length function
and no inversion.

(1) Let ^ i , . . . , g^ be a system of generators for G. The numbers i {g^ ) , . . . , £(gn) generate
L mod 2A.

(2) Let (pj)j(EJ be representatives of G-orbits of branchpoints. For jo G J, the numbers
d{p^,pj) generate A mod L.

Proof. - First we prove the following equalities modulo 2A:

(5) d(b^) + d(V\b") = d(b^)

(6) d^gb)=£(g)^

where b,V\b" are branch points and g e G.
Define c by [b,V] H [b',b'1} = [b^c]. The point c is a branch point (possibly b,b\ or

6"), and (5) follows from the formula

d(b, b'} + d(b'^ b") = d{b, b11) + 2rf(c, b1).
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For (6), we use the formula

d(b,gb)=£{g)^2d^C,)

where Cg is the characteristic set of g (its fixed point set or its translation axis), see e.g.
[CM, 1.3]. If the point of Cg closest to b is a branch point, we are done. Otherwise g has
a unique fixed point, namely the midpoint m of [b,gb]. Since m is not a branch point,
the segment g([m,gb}) = [m.g^h} meets [m,&] in a non-degenerate segment and g is an
inversion, a contradiction.

If 9i -,92 e G we choose an arbitrary branch point 6, and using (5) and (6) we write
(modulo 2A):

^9192) = d(b,g^V) = d(b,g^b) + d(g^b,g^b) = d(b,g^b) + d{b,g^b) = £(g^) + ̂ 2).

This proves Assertion (1) of the proposition since g \—> £(g) induces a homomorphism
from G onto L/2A.

Given two branch points q, r, we write q = gpj and r = hpk with g , h G G and j, fc C J.
Then (also modulo 2A):

(7) d(q,r) = d(gpj,hpk)
= d(gpj,gpj^ + d(gpj^gpk) + d(gpk, hpk)
= d(pr.Pjo) + d{p,^pk) + ̂ -1/^)
= d(pjo,Pj) + d(pj,,pk) (mod L).

This proves the second assertion. D
PROPOSITION IV.2.
(1) Geometric Fn-actions have finite rank.
(2) Consider a non-geometric Fn-tree T as the strong limit of a system T^^t), as in Part

I I . If limmfr(r^)) is finite, then
t—»-+00

rQ(r)<limmfr(r^))
t—>-+00

and
rq.(T)<limsupr(T^)).

t—^+oo

Proof. - Let T == T^. It follows from Proposition 1.8 and Equation (**) (from the proof
of Theorem I.I) that A is contained in the subgroup of R generated by distances between
points in the finite set 5, and Assertion (1) holds.

Recall from Part II that for a given g G Fn the function t ̂  ^K{t}{g) is continuous,
and constant for t large. Thus every finitely generated subgroup of L(T) is contained in
L{TK(t)) for t large. This proves the first inequality of Assertion (2).

If the second inequality is false, then r(r^)) = r-Q(r) for t large. We choose a finite
set of elements gj G G such that the numbers £{gj) generate L(T) 0z Q. Since each
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function t \-^ f-K{t)(9j) is constant for t large, we see that the Q-vector space generated
by L(TK(t)) is independent of t for t large.

Since ^(t) varies continuously, this means that tK{t} is constant for t large. As ^K^
is not abelian (Corollary 1.7), the minimal invariant subtree of T^) is independent of t.
Therefore T is geometric, a contradiction. D

COROLLARY IV.3. - Let T be a geometric minimal F^-tree -without inversions. Let b be
the number of orbits of branch points. Then r(T) <_ n + b - 1.

Proof. - We know by Proposition IV.2 that the action has finite rank r. The group A/2A
is then isomorphic to (Z/2Z)7'. The result follows since A/2A is generated by n + b - 1
elements by Proposition IV. 1 (note that b is finite by Corollary 1.9). D

We now prove:

THEOREM IV.4. - Let T be a minimal, very small, Fn-tree. Then r^(T) < 3n - 3. Equality
may hold only if the action is free and simplicial.

Proof. - If T is geometric, we have r(T) < 3n - 3 by Corollaries III.3 and IV.3. If
T is not geometric, we recall that the geometric trees T^) are very small (see Part II),
so that rQ(T) < 3n - 3 by Proposition IV.2.

From now on we assume that the action is geometric, but not free simplicial. We know
that it has finite rank r, with A/2A ^ (Z/2Z)7', and we show r < 3n - 3. This will
complete the proof.

We consider several cases.
• If the action is simplicial, it is obtained from a graph of groups F. Consider the natural

epimorphism p from Fn to the fundamental group of F in the topological sense. Since the
action is not free, some vertex group is nontrivial and p is not injective. Free groups being
hopfian, the rank of 71-1 F is strictly inferior to n.

On the other hand, every vertex of F is the projection of a branch point of T (because
there is no inversion). By Corollary III.3, F has at most 2n — 2 vertices. It follows that
r has strictly less than 3n — 3 edges. Since A is generated by the lengths of edges, we
have r < 3n — 3.

• Now suppose that every Fn-orbit is dense in T. In the previous case, we had r < 3n—3
because L/2A had 2-rank < n. In this case, we prove that A/L has 2-rank < 2n — 3,
so that A/2A has 2-rank < 3n - 3.

We write T = TK as in Part II, making sure that every terminal vertex of K is a branch
point of T. If there are less than 2n - 2 distinct orbits of branch points in T, we are
done by Proposition IV. 1 (Assertion 2). If not, let p i , . . . ,j?2n-2 be representatives of these
orbits, chosen to belong to K. Each pj has index 1.

By Proposition 1.10, every edge stabilizer is trivial. This means that the generators
( ^ i , . . . , (pn are independent in the sense of [GLP 1]: a reduced word ̂  ... ̂ p cannot
be equal to the identity on a non-degenerate subinterval of K. Denoting by | | arclength
in K, we then have

n

W \K\=^\A,\
i=l

([Le 5, Theorem 2], see also [Le 1, corollaire 11.5] and [GLP 1, Part 6]).

4° SERIE - TOME 28 - 1995 - N° 5



THE RANK OF ACTIONS ON R-TREES 567

Equation (8) is an equality between numbers of the form d(^,r), where qr is an edge
of K or Ai. We view it as an equation in A / L (recall that every vertex of K, hence also
of Ai, is a branch point of r).

Using Equation (7) from the proof of Proposition IV. 1, we may replace each term
d(q^r) by a sum d^p-^^pj) + d(p-\^pk). We thus obtain a linear relation between the
numbers ri(pi,^), j = 2 , . . . , 2 n — 2 (whose coefficients are integers mod 2). We have
to check that it is not trivial.

The coefficient of d(pi,pj) in the expansion of \K\ (resp. |A^|) has the same parity as the
sum V^ UK^X) (resp. V^ UA^ (x)) taken over vertices of K (resp. Ai) belonging to the orbit
of pj. Since every pj has index 1, Equation (4) from the proof of Theorem III.2 then yields

2n-2

the nontrivial relation V^ d(pi^Pj) = 0 "^od L between the 2n — 3 generators of A/L.
J=2

• Finally, we simply assume that the action is not simplicial. We recall [Le 3] that
T may be obtained as a graph of transitive actions. In particular, there exists a subtree
Tv C T such that:
- Tv is closed, not equal to a point;
- there exists 6 > 0 such that, for g e Fn, either gTy = Ty (i.e. g G Stab(T^)) or the

distance between Ty and gTv is greater than 6\
- Stab(Ty) acts on Ty with dense orbits.

Let T ' be the Fn-tree obtained by collapsing each gTy to a point. The natural action
of Fn on T ' is very small. Apply Theorem III.2 to both T and T ' . We find that Stab(T^)
has some finite rank p and

i(T)-i(T/)=i(T^-(2p-2)^

where i(Ty) is the index of Ty viewed as a Stab(Ty)-tree. The left hand side is non-
negative because T is geometric, while the right hand side is non-positive. This implies
z(T^) = 2p - 2: the action of Stab(Ty) on Ty is geometric.

If there are less than 2p — 2 distinct Stab(Ty)-orbits of branch points in Ty, then there
are less than 2n — 2 distinct ^-orbits in T, and we are done. Otherwise, the analysis of
the previous case yields a nontrivial relation in A(Ty)/£(Ty), hence also in A(T)/£(T).D

COROLLARY IV.5. - Let T be a very small Fn-tree -with length function i. Suppose
i o a == \t "with a G Aut(Fn) and X e R4'. Then X is algebraic, of degree bounded by
3n — 4. If T is geometric, then X is an algebraic unit.

Proof. - If the action on T is free simplicial, then A = 1. If not, multiplication by A
defines an automorphism of L 0 Q, a Q-vector space of dimension < 3n — 4. This implies
that A is algebraic of degree < 3n - 4. If the action is geometric, then A is a unit because
it acts on L, a finitely generated abelian group by Assertion 1 of Proposition IV.2. D
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V. Spaces of length functions

Let G be a finitely generated group. Let ^ be the set of conjugacy classes in G. Let
LF{G) C (R+)" be the space of all length functions on G, and PLF(G) the space of
projectivized length functions. Recall that PLF{G} is compact [CM]. Also note that the
Q-rank of a length function i depends only on its class in PLF(G).

PROPOSITION V.I. - Let G be a finitely generated group. Let k > 1 be an integer. The space
LF<k(G) of all length functions with Q-rank < k has dimension < k. The space PLF^(G)
of all projectivized length functions with Q-rank < k has topological dimension < k — 1.

Proof. - Fix k + 1 rationally independent real numbers A o , . . . , \k- For j = 0 , . . . , fc,
let Mj be the space of all x G (R4')^ such that no nonzero coordinate of a; is a
rational multiple of \j. Each Mj has dimension 0: every x G Mj has arbitrarily small
neighborhoods with boundary disjoint from Mj. Next we observe that every i e LF^k(G)
belongs to at least one Mj: otherwise L 0 Q would contain Ao , . • . , \k- It follows that
LF^k(G) has dimension < k since it is contained in the union of the 0-dimensional sets
Mj, j = 0 , . . . , k (see [HW, p. 29]). A similar argument applies to PLF<k(G). D

THEOREM V.2. - The boundary ofCuller-Vogtmann's outer space Yn has dimension 3n—5.

Proof. - The boundary of Yn consists of (projective classes of length functions of) very
small actions of Fn which are not free simplicial, so that it has dimension < 3n - 5 by
Theorem IV.4 and Proposition V.I. Since it is easy to find in 8Yn a (3n — 5)-simplex
consisting of simplicial actions, we have dim Yn = 3n — 5. D

Remark V.3. - Let Ti be a very small F2-tree with dense orbits (see [CV, §5]). Apply
Example 11.6, taking T^ to be the universal covering of the graph F pictured below (for
n > 3) and choosing p^ in the preimage of q. We get a non-geometric very small Fn-tree.
Varying the lengths of edges of F gives a (3n - 7)-simplex of non-geometric actions in SYn
(this application of Example 11.6 was suggested by M. Bestvina). Since we may choose
;?i arbitrarily in Ti \ Ti, which is one-dimensional (see the proof of Theorem 2.2.2 in
[MNO]), the set of non-geometric actions in SY^ has dimension > 3n — 6 for n >_ 3.

n-2

Finally, we sketch a proof of a theorem announced by Skora [Sk 3].

THEOREM V.4. - Length functions of simplicial actions are dense in LF(Fn).

Proof. - We need to approximate any i G LF(Fn) by simplicial length functions. By
Example 11.2, we may assume that i comes from a geometric Fn-tree T^. The system
/C consists of a finite tree K and n isometrics ^ : A^ —^ B{. We may approximate it
by a system K! such that every distance between vertices of K ' ,A^B[ is rational. The
corresponding length function V is then simplicial. By Assertion 3 of Proposition 1.4, this
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i' is an approximation of t: for g e Fn cyclically reduced, \V[g) - i[g)\ is bounded by \g\
times a constant depending only on /C and 1C'. D
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