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AN INDEX FOR COUNTING FIXED POINTS OF
AUTOMORPHISMS OF FREE GROUPS

DAMIEN GABORIAU, ANDRE JAEGER, GILBERT LEVITT, AND

MARTIN LUSTIG

Introduction. Let be an automorphism of F Fn, the free group of rank n.
The Scott conjecture, proved by Bestvina-Handel [BH], states that the fixed
subgroup Fix {g FI(g) g} has rank at most n.
Using R-trees, we shall improve this result by showing the following theorem.

TrmoEt 1. If is any automorphism ofFn, then rkFix + a()/2 < n.

Here a() is the number of equivalence classes of attracting fixed points for the
action of on the boundary of F (defined below). This positively answers a con-
jecture of Cooper [Co, p. 455].

If Fix is trivial, our result specializes to the following corollary.

COROLLARY 2. An automorphism of Fn with Fix {1} fixes at most 4n
ends ofFn.
To define a(t), in general, we consider the boundary 6F of F (see Section 1),

the Cantor set of ends of F if n > 2. If we choose a free basis 01,..-, 0n, it may be
viewed as the set of all infinite reduced words X xl-.-xi--, in the letters 0 1.
The action of on F extends to a continuous action of on F. The boundary of
the subgroup Fix naturally embeds in F, and acts on di(Fix ) as the identity.
We consider fixed points of in 6F. It turns out (Proposition 1.1) that such a

fixed point X either belongs to di(Fix ), or is attracting, or is repelling (i.e.,
attracting for -1). Here attracting may be understood in the topological sense
(limp+oo tP(X’) X for X’ close to X in F u F), or in the algebraic sense of
[CL1, (1.4)]. As in [CL1], we say that two fixed points X1,X2 6F are equiv-
alent if there exists e Fix such that X2 #X. Note that any point equivalent
to an attracting fixed point of is itself an attracting fixed point of .
We let () be the set of equivalence classes of attracting fixed points of ,

and we denote a() the cardinality of ’(). The finiteness of a() follows from
[Co] (or [CL1]).
Theorem 1 may be illustrated by the following example from [CL1]. Let

0t:F2 - F2 be given by (a) aba, (b) ba. The fixed subgroup has rank 1
and it is generated by aba-lb-. One obtains two inequivalent fixed words
X ababaaba and X2 a-b-a-la-b-a-lb-la-1--. by taking the limit
as p goes to + of oP(a) and tP(a-1), respectively. Note that X3
baabaaba limp_oo P(b) is equivalent to X1. The automorphism is induced
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by a pseudo-Anosov homeomorphism p of a punctured torus M. The fixed sub-
group corresponds to the boundary of M, while the equivalence classes of attract-
ing fixed points correspond to the separatrices of the unstable foliation of 0.

This paper elaborates on the note [GLL], which contains a proof of the Scott
conjecture based on R-trees. As in [GLL], the two main ingredients in this paper
are the existence of a certain -invariant R-tree and an inequality by Gaboriau-
Levitt [GL] about stabilizers of branch points in R-trees.
Given an automorphism of F, there is an action of F on an R-tree T, which

is -invariant in the following sense: its length function g satisfies g o 2g for
some number 2 > 1. (This action represents a fixed point for the action of on
the boundary of Culler-Vogtmann’s outer space.) Equivalently, there exists a
homothety H T -- T with stretching factor 2 > 1 (i.e., d(Hx, Hy) 2d(x, y) for
x, y e T), such that (w)H Hw for all w F. (We identify an element of F and
the associated isometry of T.)
The existence of such an invariant tree, with a very small action of F, is now

well known (see Bestvina-Handel, Skora, Lustig [Lu], and Paulin [Pa3]). In
Section 2 we construct T and derive additional properties. In particular we prove
the fact (due to Lustig [Lu]) that T may be assumed to have trivial arc sta-
bilizers. We also prove that H has a fixed point Q T whenever rkFix /
a()/2 > 0.

In Section 4 we analyze the invariant tree T, relating properties of to geo-
metric properties of T. This may be viewed as the heart of the paper. We distin-
guish several cases. Here we mention only the most interesting oneqwhen

2 > 1. In this case we use the fact (proved in Section 3 using an estimate by
Bestvina-Feighn-Handel for maps between metric graphs) that every R-tree with
a very small action of F has the following bounded backtracking property (BBT):
Given Q T, there exists C > 0 such that, if v, w are reduced words in F with no
cancellation in the product vw, then d(vQ, [Q, vwQ]) < C, where [Q, vwQ] denotes
the segment between Q and vwQ.

Consider an attracting fixed point of , represented by a fixed infinite word
X Xl...xi.... We write Xp Xl...Xp. Applying BBT to the fixed point Q of
H, we show that either X 6(Stab Q) 6F (where Stab Q c F is the stabilizer of
Q) or as p goes to +, the sequence XpQ goes to infinity in T, staying at a
bounded distance from an H-invariant infinite ray p starting at Q.

This leads to an injection from the set of equivalence classes of attracting fixed
points of not contained in 6(Stab Q), to the set of orbits of the action of Stab Q on
r0(T\{Q}).
We now use [GL, Theorem III.2], which, in the special case when arc stabil-

izers are trivial, may be stated as follows.
TrlnOgM 3 [GL]. Let T be an R-tree with a minimal Fn-action whose arc sta-

bilizers are all trivial. Given Q1,. Qq T belonging to distinct orbits, we have

rkStabQe+-v(Qe)-I <n-1,
e=l
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where v(Qe) > 1 is the number oforbits of the action ofStabQe on zo(T\{Qe}). In
particular, rk Stab Q < n- 1 and v(Q) < 2nfor every Q T.

Using Theorem 3, we prove Theorem 1 by induction on n in Section 5. As in
[GLL], we need to consider several automorphisms simultaneously to make the
induction work.
Two automorphisms e, of F represent the same outer automorphism

tl) e Out(F) if there exists tne F such that fl im o t with im([t) m[lm-1. As in
[GLL], we say that and fl are similar if m can be written m c(c-) for some
c e F or, equivalently, if fl ic o o (ic)-. Similar automorphisms represent the
same automorphism, up to a change of basis in F. In particular the rank of Fix
and the number a() are similarity invariants.
What we actually prove by induction on n in Section 5 is the following

statement.

THEOREM 4. Let t0,... ok be automorphisms ofFn representing the same outer
automorphism and belonging to distinct similarity classes. Then

rkFixi+-a(i)- 1 < n- 1.
i=0

Equivalently, Y’e(o) max(0,rkFix + a()/2- 1) < n- 1, where 6e(dp) is the
set ofsimilarity classes ofautomorphisms representing a given outer automorphism

e Out(F).
(This theorem is only superficially stronger than Theorem 1. It follows from

Theorem 1 by applying it to the automorphism of Fn * Fk equal to 0 on Fn and
sending the ith generator ti of Fk to tiui where i iu, o o.)
As an example, let M be a compact orientable surface of genus 2 with one

boundary component. Let be a pseudo-Anosov homeomorphism of M whose
nstable foliation has two singularities: a 7-prong saddle x in the interior of M
and a tripod y on the boundary (see [MaSm, Theorem 2] for a proof of existence).
The homeomorphism induces two nonsimilar automorphisms x and y of
F4 nM, depending on whether the basepoint is set at x or y. (Note that x and y
are fixed by but belong to different Nielsen classes.) One has Fixy Z and
a(y) 1 (corresponding to the infinite separatrix of y). On the other hand,
Fixx is trivial and a(x) 7. In this example, equality holds in Theorem 4.

In Section 6, written rather informally, we discuss and interpret the index

1
a() 1ind() rk Fix +

of an automorphism of F, as well as the index

ind() max 0, rk Fix e +
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of Out(F) that appears in Theorem 4. It turns out that ind(O) is strongly
related to important structural properties of . In particular we consider auto-
morphisms of maximal index n- 1.

1. The action of a on tF. Let F be a free group of rank n and F its compacti-
ficatio (i.e., end completion as in [Co] or compactification as a hyperbolic
group; see, e.g., [Sho2, Chap. 4]). The boundary 6F F\F is a compact space,
homeomorphic to a Cantor set if n > 2. The natural actions of F and Aut(F) on
F extend continuously to F. Any finitely generated subgroup F c F is quasi-
convex [Shol], and hence inclusion induces a natural embedding 6F’ 6F (see
[CDP, p. 115]).
Once we fix a free generating system 91,..., On for F, we view F as the set of

reduced words in the letters 9 1, and 6F as the set of infinite reduced words
X--Xl...xi.... We denote Xi xl...xi. Given two reduced words X,X’,
finite or infinite, we let X ^ X’ be their common initial segment (the empty word
if Xl x) and we denote cx,(X) the length of X ^XI. A sequence of reduced
words Xp F converges to X 6F if and only if limp+ cx(Xp) +.
Now let a be an automorphism of F. Recall (see [Co] and Section 3) that there

is a cancellation bound for a; that is, a number B such that

+ I (w) 2B,

whenever v, w, vw are finite reduced words with Iowl + Iwl, (Here] ]denotes
word length.)

Let X Xl...xi.., be fixed by . We write (Xi)--Xk(i)Zi with k(i)=
cx((Xi)). Since X is fixed by , the sequence k(i) goes to + as increases.
Bounded cancellation implies ]Zil < B. Also note that Ik(i+ 1)-k(i)l is
bounded by a constant depending only on (namely, max I()1).
As in [CL1], we say that X is an attractin# fixed word of if

lim (k(i) i) +.

Note that there exists i0 such that for all i> i0, one has k(i) > + B + 1, and
hence

io > cx(X’).

We say that X is an attracting fixed point of if there exists a neighborhood U of
X in F such that

X’ U = lim P(X’) X.

The following proposition shows that the two notions of attraction are the
same. We say that X is repelling for if it is attracting for -1.
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PROPOSITION 1.1. Let X 6F be an infinite fixed word of. The following are
equivalent:

(1) X is an attracting or repelling fixed word;
(2) X is an attracting or repelling fixed pointfor the action of on F;
(3) X di(Fix o).

(Ofcourse, the subcases attracting or repelling in (1) and (2) coincide.)

Proof. To prove (1) = (2), suppose X is an attracting fixed word. Choose
i0 as in (.). If cx(X’)>io, we get cx((X’))>cx(X’), and hence
limp__.+oo cx(P(X’)) + and lim_+oo (X’) X.
The implication (2) = (3) is clear since acts as the identity on Fix and no

point X e di(Fix ) can be isolated in Fix .
To prove (3) = (1), let X be any infinite fixed word. As in [Co], we consider

the words wi X-I(xi). We note that

Wi Wp =: XpX- Fix .
If the sequence of words wi takes the same value infinitely often, we get X e Fix
since for fixed we have X limp__,+oo XX-. Otherwise, [wi] goes to infinity.
Recall that (Xi)= Xk(i)Z with Izl < B and [k(i / 1)- k(i)[ bounded. Since
[wi[ is comparable to Ik(i)--il (the difference is bounded by B) we see that
k(i) goes to either + or - as increases. If the limit is +, then X is an
attracting fixed word. If it is -, we repeat the argument for -1. Define (i)
and_ i analogously to k(i) and _Zi" Writing Xi---_..-l(Xk(i))t-l(zi), we see that
k(k(i)) stays bounded. Then k(k(i)) k(i) (k(k(i)) -i) (k(i) -i) goes to
+, and so does k(i)- (recall that k(i) goes to +). This means that X is a
repelling fixed word. [

Note that the corollary stated in the introduction is an immediate con-
sequence of Theorem 1. If Fix t { 1 }, then there are at most 2n attracting fixed
points and 2n repelling ones.

2. The invariant tree

2.1. Statement of the result. For the convenience of the reader, we state some
basic definitions about R-trees. For more detailed information see, for example,
[MoSh], [CM], or the survey articles [Shall, [Sha2].
An R-tree is a nonempty metric space in which any two distinct points x, y are

joined by a unique arc Ix, y], and in which every such arc is isometric to a closed
interval of R. (Recall that a (nondegenerate) arc is a space homeomorphic to
[0, 1].) Alternatively (see [GH]), an R-tree is a path-connected metric space
(X, d) that satisfies the 0-hyperbolicity condition

d(x, z) + d(y, w) < max{d(x, y) + d(z, w), d(x, w) + d(z, y) }.
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We consider R-trees equipped with a left action of a group G by isometries.
The stabilizer Stab(x) of a point x T is the subgroup of G consisting of ele-
ments fixing x. Similarly, the stabilizer of an arc Ix, y] is the subgroup consisting
of elements fixing [x, y] pointwise.
The G-action on T (or sometimes just T) is called

trivial if 3 x T with Stab(x) G;
simplicial if T arises from a simplicial tree by setting each edge length equal
to some positive value (always 1 in this paper);
minimal if there is no proper G-invariant subtree;
free if the stabilizer of every point is trivial;
with trivial arc stabilizers if the stabilizer of every arc [x, y] is trivial;
small if no arc stabilizer contains a free group of rank 2.

Let e be an automorphism of F. Recall that the index of e is the quantity

1
a() 1ind() rk Fix +

that appears in Theorem 4. It is an integer, or a half-integer, with ind(a) > -1.
Our interest is in automorphisms with positive index.
We now state the main result of this section, which is proved in Sections 2.2

to 2.5. A homothety of a metric space (X,d) is a map H:X- X satisfying
d(Hx, Hy) 2d(x, y) for some fixed 2 > 0 called the stretchin9 factor.
THEOREM 2.1. For every automorphism of F there exists an R-tree T such

that:
(1) F acts on T nontrivially, minimally, with trivial arc stabilizers;
(2) There exist 2 > 1 and a homothety H: T --+ T with stretching factor 2 such

that

a(w)H Hw T T

for all w F. If 2 1, then T is simplicial;
(3) If ind() > O, then H has at least one fixed point Q T. More 9enerally, if

fl im o ct satisfies ind(fl) > O, then H# mH has a fixed point. (Recall that
ira(g) mgm-1.)

Remark 2.2. It is easy to see that, given a and T, the equation a(w)H Hw
uniquely determines H (and 2). The second part of assertion (3) from Theorem
2.1 will be used when we study several automorphisms simultaneously (see
Section 5). Note that fl(w)H# H#w for all w F, since

fl(w)H m(w)m-lmH-- mo(w)H mHw- H#w.

Thus we may use the same tree T to study all automorphisms representing a
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given outer automorphism . Indeed, assertion (2) is equivalent to the equation
o Ae, where is the length function of the action of F on T.

2.2. A criterion for a fixed point. Let z be a finite connected graph with rqz
free of rank n > 2. We fix a universal covering z and an isomorphism from
the group of covering transformations to F. (This is a way of identifying nlZ with
F without having to choose a basepoint; of course this identification is only
defined up to a conjugacy in F.)

Let f:z--, z be a homotopy equivalence. It induces a well-defined outer
automorphism of F. The formula

e(w)f =fw (**)

defines a one-to-one correspondence between the set of lifts f" g -- and the set
of automorphis_ms of F representing . We fix an automorphism and the
correspondingf.
The following result generalizes Lemma 2.1 of [BH].

PROPOSITION 2.3. Let" -- be associated with the automorphism ofF by
(**). If ind(z) > 0, then f has a fixed point.

Pr_oof. As in [BH, p. 19], we use the following geome_tric fixpoint criterion
for f: Let x, y e be distinct points with the property that f(x) is distinct from x
and is not contained in the same connected component of- {x} as y, and con-
versely. Then f has a fixed point on [x, y].
Make z into a metric graph by declaring that every edge has length 1, and

equip with the lifted metric. For any point P e , the map j" w wP gives a
quasi-isometric embedding F . This induces a homeomorphism between 6F
and the space di of ends of , which is independent_ of the choice of P. Further-
more, the distance in between f(j(w))~-(w)f(P) and j((w))- (w)P is
bounded by the distance between P and f(P), independent of w e F. It follows
that the extension off to 6 agrees with the extension of to diF. An attracting
fixed point of in 6F defines an attracting fixed point forf in

In the situation of Proposition 2.3, first assume that has at least two distinct
(possibly equivalent) attracting fixed points X1, X2 in diF. Then any two points
x, y e that are sufficiently close to the co_rresponding fixed points on di satisfy
the hypothesis of the above criterion, andf has a fixed point. Such points X, X2
exist if a() > 2. They also exist if there exist both an attracting fixed point X in
diF and a nontrivial -fixed u F, as we can then take X2- uX. Since we
assume ind()> 0, the only remaining case is when rk(Fix)> 2. But then
Lemma 2.1 of [BH] applies.

2.3. Partial train track maps. There have been various independent attempts
(see [BH], [Lo], and [Lu]) to carry Thurston’s concept of train tracks for sur-
face homeomorphisms over to automorphisms of free groups. Our notion of
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partial train track maps in Definition 2.4 is close to but weaker than the "rela-
tive train track maps" in [BH, Chap. 5]. Here we crucially use the existence of
such a relative train track map for every outer automorphism of F, as shown in
[BH, Theorem 5.12]. Alternatively, one can use 5 of [LuOe].
Given f’z z as above, we say that a locally injective path c’[0, 1] z

from a point p to a point q is f-backtrackin9 if f(p) --f(q) and the loop f o c is
null-homotopic in z. Equi_valently, any lift of c to the universal covering is a

segment [/3, ] with f(/) f().

Definition 2.4. A continuous map f: z -- z is called a partial train track map
relative to z’ c z if the following conditions are satisfied:

(1) z is a finite connected graph with no vertices of valence 1;
(2) f is a homotopy equivalence;
(3) f preserves the set z of vertices of z :f(z) c z;
(4) z’ is a (not necessarily connected) subgraph of z that satisfies

(a) ’(b) f(z’) "c’,
(c) z’w 0 is maximal with respect to (a) and (b);

(5) for any k > 1, all fk-backtracking paths contained in z- (z’w z) are
mapped by fk to ’.

LEMMA 2.5. Let f z -- z be a relative train track map in the sense of [BH]
with f-invariant maximal filtration zo c Zm. If z has no vertices of valence 1,
then f is a partial train track map relative to z Zm-1.

Proof Condition (1) of Definition 2.4 holds by assumption. Conditions (2)
and (3) hold, as f is a topological representative. See [BH, pp. 4-5]. Condition
(4) follows from our definition of z . If the mth stratum of z is exponentially
growing, then condition (5) follows from [BH, Lemma 5.8]. If this stratum is not
exponentially growing, then the transition matrix M(f) is a permutation matrix,
and hence, for every k > 1, the fk-image of any edge e z z’ contains only one
edge of z z’. This implies condition (5).

PROPOSITION 2.6. Given an outer automorphism of F, there exists a partial
train track map f z -- z that induces .
Proof By Theorem 5.12 of [BH], there exists a relative train track map

f’z - for . By Lemma 5.2 of [BH] we can modify f and z so that z doesn’t
contain any vertex of valence 1. Now apply Lemma 2.5.

Now let f:z z be a partial train track map. Let el,... ,ep be the (un-
oriented) edges of z- z’ (or more precisely of the closure of z- z). Conditions
(3) and (5) of Definition 2.4 imply that for any k > 1 the fk-image of any edge
ei z z crosses properly over the edges of z z’. Hence f determines a p p
transition matrix M(f) with nonnegative integer entries, where the ith row
records the number of times the f-image of ei crosses the edges el,..., ep, dis-
regarding the orientation.
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From condition (4c) it follows that M(f) is either zero or is irreducible
with Perron-Frobenius (PF) eigenvalue 2 > 1. (For definitions and the Perron-
Frobenius theorem, see [Ga] or [DV]). As conditions (1) and (2) exclude the
possibility of M(f) being zero, we have 2 > 1.

Let v (vi) be a strictly positive eigenvector v associated to the eigenvalue/
(it exists and is unique up to scaling). We define the PF-length of an edge ei of
z- z’ as L(ei)- vi. (We also set L(e)= 0 for all edges e c z’.) Note that the
image by f of any edge e is a path of PF-length 2L(e).

Let be the tree obtained from the universal covering by collapsing every
connected component of the preimage of z’ to a point. The action of F on
induces an action on that is not necessarily free but has trivial arc stabilizers.
Make into a metric tree by lifting the PF-length L to the edges of . We get an
F-invariant distance function d" if x, y , then d(x, y) is the PF-length of the
segment Ix, y].

Remark. If the automorphism is irreducible (in the sense of [BH]), then
there exists an absolute train track representative for ; that is, a train track
representative f:z z with only one stratum. In this important special case, f
is a partial train track map relative to z’ and .

Given a Aut(F), let f be a p_artial train track map inducing the outer auto-
morphism determined by a. Let f" be the lift of f associated to a by (**)
(see the beginning of Section 2_.2).

Since f(z’)c z’, the map f induces f’ . By condition (5) of Definition
2.4, the image by f of an edge e is a segment of length 2L(e). We may then re-
define f on the interior of e, so that fie expands uniformly by 2. We do this
equivariantly, thus making sure that the relation a(w)f--fw still holds. The new
map (also denoted f) satisfies d(f(x), f(y)) < 2d(x, y), and equality holds if x, y
belong to the same edge.

2.4. The case 2 1. If it 1, then M(f) is a permutation matrix, and we can
choose the eigenvector v to have all entries vi 1. Since f permutes the edges of- z’, the map f is a homeomorphism and therefore a global isometry
(no folding occurs).
We claim that T satisfies the conclusions of Theorem 2.1. Conditions (1)

and (2) obviously hold with H =f. If ind(a) > 0, the map f has a fixed point
q by Proposition 2.3. The image Q of q in T is a fixed point of H. To get a
fixed point for H# mH, we simply apply this argument to the map mf, noting
that it satisfies (**) with respect to ft.

2.5. The case 2 > 1. The rest of Section 2 is devoted to the proof of Theorem
2.1 when 2 > 1. In this case we first have to replace the distance d by a pseudo-
distance d for which f acts as a homothety. (Recall that f only satisfies the
inequality d(f(x),f(y))< 2d(x,y).) We present this construction with a fairly
high degree of generality.
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A pseudo-distance on a set Z is a function O:Z x Z R+ that satisfies the
axioms of a distance, except that there may be distinct points of Z that have dis-
tance zero. The function 0 induces a genuine distance on the set Z(O) obtained
from Z by identifying x, y whenever O(x, y)= 0. We denote :Z Z(O) the
canonical quotient map.

Let Z be a set equipped with a distance d (a pseudo-distance would in fact be
enough). Let 2 > 0, and let h Z Z be any map that satisfies a Lipschitz con-
dition d(h(x), h(y)) < 2d(x, y) for all x, y Z.

Let doo be the limit of the nonincreasing sequence of pseudo-distances

dk(x,y)
d(hk(x),hk(y))

It obviously satisfies doo(x,y) < d(x,y) and doo(h(x),h(y))---2doo(x,y) for all x,
y e Z. The map H induced by h on the associated metric space Z(doo) is thus a
homothety with stretching factor 2.
Now assume that a group G acts on Z isometrically with respect to d, and that

there exists a map A: G G (usually an automorphism) that "commutes" with
h in the sense that h(a(x)) A(a)(h(x)) for all # e G, x e Z. Then G preserves the
pseudo-distance do, as well. In other words, there is an induced isometric action
of G on Z(doo) for which the natural surjection :Z Z(doo) is G-equivariant.
Furthermore this action commutes with H in the sense that A(g)H Hg for all
e G. We also denote doo the induced distance on Z(doo).
In particular, suppose that Z is a path-connected metric space and d satisfies a

6-hyperbolicity inequality

d(x,z) + d(y, w) < max{d(x,y) + d(z, w),d(x, w) + d(z, y)} + 26.

If 2 > 1, then T Z(do) is 0-hyperbolic. It is an R-tree, equipped with an iso-
metric action of G and a homothety H: T T with stretching factor 2. (T is
path-connected because Z -- T is continuous as doo < d.)

Remark. In general, it is quite possible that all points of Z have doo-distance
zero from each other, so that T consists of a single point only. In particular, this
is true if 2 is strictly larger than the infimum of all numbers 2 such that
d(h(x), h(y)) < 2d(x, y).

Applying the above construction to the metric space Z-- (, d) and the map
h-f, we obtain an R-tree T---(doo) equipped with an isometric action of F
and a homothety H satisfying condition (2) of Theorem 2.1. Condition (3) holds
for the same reasons as in the case 2 1. (Of course, any homothety with 2 > 1
has a unique fixed point in the metric completion of T, but we insist that the
fixed point be in T.)

It remains to check condition (1).
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LEMMA 2.7. The action ofF on T is nontrivial and minimal.

Proof. For each edge ei of z z’, choose a lift i [a, b] to . By condition (5)
of Definition 2.4, all the backtracking in fk(ei) takes place in z’. It follows that
dk(a, b) d(hk(a), hk(b))/2k equals d(a, b) for all k, and the image of i in T is a
segment J of length L(ei).
Note that the F-orbit of any x T meets some j. In particular, if T’ c T is

an F-invariant subtree, the Hausdorff distance D(T’, T)---SUPxTdoo(x T’) is
finite: it is bounded by the diameter of any subtree containing all of the J’s. If,
furthermore, T’ is invariant under H, then D(T’, T) has to be zero because
2D(T’, T) D(T’, T).
Now we can prove that the action is not trivial. Assume it is. The fixed subtree

To {x e T lgx x Vg e F} is compact. (It is contained in the union of the
because F acts as the identity on To c J} and every orbit meets some J}.) Since
it is H-invariant, it has to be a point. This forces T to be a point because
D(T0, T) 0. This is a contradiction since J} T.
As the action is nontrivial, there is a unique minimal F-invariant subtree T

(see [CM]), which is H-invariant. We want to show T T. We know that
D(T, T) 0. In other words, T- T may contain only endpoints of T (points x
with T- {x} connected). It follows that the interior of each segment J} is con-
tained in T. Irreducibility of M(f) and > 1 imply that i occurs in the interior
off() for some edge e of and some k > 1. This proves that J} is contained in
HkT1 TI, and therefore T1 T.

LEMMA 2.8. The F-action on T has trivial arc stabilizers.

Proof. The action of F on T (do) is the limit of the sequence of actions
(F, (dk)). Each of these actions is small because it has trivial arc stabilizers.
Therefore the action on T is small, as a limit of small actions (see [CM], [Pal]).
To prove that T has trivial arc stabilizers, assume that c c T is a non-

degenerate arc fixed by some nontrivial w F. Let p > 1 be the largest integer
such that w is a pth power. (In fact, p- 1 because the action is very small in the
sense of [CL2].) Recall that the F-orbit of any x e T meets some J. Since the
length of Hk(c) grows arbitrarily large with k, we can find, for sufficiently large
k, disjoint nondegenerate subarcs co,..., Cp of Hk(c) such that ci rico for some
vi F (i 1,...,p).
The element w’ =ak(w) fixes Hk(c). Since w’,vl,...,Vp all have different

actions on co, there exists an such that vi and w’ do not generate a cyclic sub-
group of F. Then w’ and vi-lw’vi generate a free subgroup of rank 2 that fixes ci
pointwise, contrary to the fact that the action is small. [

Remark. The last argument may be extended to small actions of hyperbolic
groups such that there exists a homothety with 2 > 1 that commutes with an
automorphism a (in the sense of assertion (2) of Theorem 2.1). This applies in
particular to the actions constructed by Paulin [Pa3].
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3. Bounded backtracking. Let f: rl ---} T2 be a continuous map between R-
trees. As in Section 2, a path c [0, 1] --. T1 is called an f-backtrackinff path if c is
injective and f(c(O)) =f(c(1)). We say that the map f has bounded backtracking
if the image (f o c)([0, 1]) of any f-backtracking path c has a diameter bounded
independently of c.

PROPOSITION 3.1. Let T be an R-tree with a minimal action ofF. Thefollowing
properties are equivalent.

(BBT1) Given Q T, there exists C > 0 such that, if v, w, vw F have word
len#th satisfyin# Iowl Ivl + Iw[, then d(vQ, [Q, vwQ]) < c.
(BBT2) Given Q e T, there exists C > 0 such that d((vl A/32)Q, [/)IQ,/32Q]) c

if/)1,12 are reduced. (Recall that A denotes the common initial subword.)
(BBT3) Every F-equivariant map f " -- T, where is a simplicial R-tree with

afree minimal F-action, has bounded backtracking.
(BBT4) For every F-equivariant map f" F --, T, where F is a simplicial R-tree

with afree minimal F-action, there exists a constant 6 > 0 such thatfor all x, y e "one has f([x, y]) t/([f(x), f(y)]) (the iS-neighborhood of If(x), f(y)]).

Notice that (BBT4) admits direct generalizations to actions of arbitrary
groups G on R-trees, through replacing F by a Cayley graph of G. Notice also
that in this view BBT appears to be a kind of "one-sided quasi isometry."
We do not prove Proposition 3.1, as we need only the easy implication that

(BBT1) implies (BBT2). (This is proved by setting and w equal to the reduced
words representing v-i(v ^v) and (v AI)2)-11)2, respectively.) We do need,
however, the fact that the tree T provided by Theorem 2.1 satisfies (BBT1) when
it > 1. This may be derived directly from the construction of T in Section 2.5, but
we give a general argument.
Note that every free minimal action of F on a simplicial R-tree T satisfies

(BBT3), as every map f, as in (BBT3), is a quasi isometry. Also note that
Cooper’s cancellation bound (see [Co] and Section 1) is a special case of this.
However, we need the following stronger version, due to Bestvina-Feighn-
Handel (see [D, Lemma 11.2.4]).

LEMMA 3.2. Ifa minimal action ofF on an R-tree T isfree and simplicial, then
it satisfies (BBT1) with C Ein=l d(Q, giQ).

Proofi Let Z be the quotient graph of T by the action of F. Let Y be a wedge
of n circles, the ith circle having length d(Q, gQ). Let : Y Z be the natural
map sending the ith circle to the projection of the segment [Q, gQ]. Then apply
Lemma II.2.4 of [DV].

The action given by Theorem 2.1 has trivial arc stabilizers, and hence it is very
small in the sense of Cohen-Lustig [CL2].

COROLLARY 3.3. Every very small action ofF on an R-tree T has BBT.
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We do not know whether this can be extended to more general actions, such
as small actions of hyperbolic groups. Guirardel [Gu] has shown that small
actions of F have BBT.

Proof of Corollary 3.3. Every very small F-action on T is a limit of free sim-
plicial F-actions on R-trees T/ by [BF]. This limit may be understood as con-
vergence of length functions or equivalently (see [Pa2]) as convergence in the
equivariant Gromov-Hausdorff topology. Given Q T, a finite subset Fo c F,
and e > 0, then for large there exists Qi
and 9Qi in T/is e-close to d(Q, 9Q) for 9 F0. It follows easily that Lemma 3.2 is
also valid for very small actions.

Now let T be an R-tree with a minimal action of F satisfying (BBT1). A ray
p T, with origin a point Q T, is the image of an isometric map (0, ) T
with closure t7 p w {Q}. Two rays (with different origins) are equivalent if their
intersection has infinite length. We denote fiT the set of equivalence classes. The
action of F on T induces a natural action of F on fiT.

Suppose p is a ray, R, S are points of T, and Vn F is a sequence such that the
length of [R, vnS] c p goes to infinity as n . Then clearly the length of
[R’, vnS’] c p’ goes to infinity for any R’, S’ T and p’ equivalent to p.

LEMMA 3.4. Suppose the length of [R, vnS] c p goes to infinity as n - . Then
v, converges to some X 6F depending only on p. Furthermore, the length of
[R, wnS] p goes to infinity for every sequence Wn -- X.

Proofi We may assume R --S--Q, the origin of p. First note that IVnl goes
to infinity with n. Thus some subsequence converges to a point of diF. To prove
uniqueness of the limit, we suppose that Vn, Vn are two sequences, as in the
lemma, converging to X, X’ diF, respectively, and we show X--X’. Indeed,
with the notation from Section 1, the distance between Q and (Vn ^ V’n)Q goes to
infinity as n- by (BBT2). This implies that [vn ^ v,l goes to infinity; that is,
X=X’.

Denoting Xt(p)=vp^X=limi__,oo(Vp^Vi), we note that the length of
[Q, Xt(p)Q] p goes to infinity with p by (BBT2). Property (BBT1) then implies
that the length of [Q, w,Q] p goes to infinity for any w x.
Given R, S T and a ray p, minimality of the action of F on T provides a

sequence Vn as in Lemma 3.4. We define j(p) 6F as the limit X of Vn. Of course
j(p) depends only on the equivalence class of p.

LEMMA 3.5. This defines an F-equivariant injection j 6T-- 6F. If H is a
homothety of T, as in Theorem 2.1, then a(j(p))-j(H(p)) for any ray p. The
image ofj is disjointfrom every di(Stab Q).

Proof. Equivariance and injectivity are clear. For the second assertion,
simply note that

H([R, vnS] p) JR’, ot(vn)S’] n(p)
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with R’--H(R) and S’= H(S). Since the length of [Q, vnQ]cp is zero if

vn Stab Q, we have j(p)

4. Analyzing the tree. Let be an automorphism of F with positive index

1
a() 1 > 0ind() rk Fix +

and let T, H be given by Theorem 2.1. Recall that H has at least one fixed point.

LEMUA 4.1. (1) If Q is fixed by H, then Stab Q is -invariant. We denote
0Q 0[StabQ.

(2) If Q is the only fixed point of H, then Stab Q contains Fix (i.e.,
Fix Fix Q).

Proof (1) From wQ Q it follows that (w)Q (w)HQ HwQ Q.
(2) From (w) w it follows that HwQ (w)HQ wQ, so that wQ Q if H

has only one fixed point.

Our main goal is to relate ind() to data coming from T and automorphisms
of groups of smaller rank (such as Stab Q, which has rank less than n by Theo-
rem 3). In particular, we map subsets of () injectively into (Q), thanks to
the following lemma. (Recall that ’(0) is the set of equivalence classes of
attracting fixed points of .)

L.tUA 4.2. Let Q T be fixed by H. let ’StabQ(00 (0) be the set of
equivalence classes of attracting fixed points having nonempty intersection with
6(Stab Q).

(1) There is an injection OQ StabQ(00 (0tQ).
(2) If Q is the only fixed point ofH, then OQ is a bijection.

Proof (1) Given a class in Stab(), represent it by some X e 6(StabQ).
Proposition 1.1 implies that X is an attracting fixed point of tQ, and we map
the class of X in () to the class of X in (0Q). Since fixed points X,
X’ e 6(StabQ) inequivalent for are inequivalent for Q, we get the required
(noncanonical) injection.

(2) If Q is the only fixed point of H, then Fix0 Fix0Q c Stab Q. This implies
that any X’ equivalent to X e 6(StabQ) also belongs to 6(StabQ) and is equiv-
alent to X as a fixed point of Q. It follows that OQ is a bijection. The class of an
attracting X e 6(Stab Q) is the image of the class of X in StabQ(0t). (Note that X
is attracting for by Proposition 1.1.) [-]

Now we distinguish several cases.

Case 4.A: > 1. In this case the map H has a unique fixed point Q. Note
that T has BBT by Corollary 3.3. We use properties (BBT1) and (BBT2) relative
to Q.
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If a, b T, we say that the segments [Q, a] and [Q, b] overlap if their inter-
section is a (nondegenerate) arc. This is equivalent to saying that a and b belong
to the same component of T\{Q}.

If H sends a component A of T\{Q} to itself, then A contains a unique H-
invariant ray p at Q; that is, p(x) Hp(x) for x > 0 (see [Li]). Such rays are
called eigenrays of n. Notice that/7 contains [Q, a] [Q, Ha] for every a A. (As
noted in [Li], the restriction of H to A is topologically conjugate to a hyperbolic
isometry of an R-tree, and p corresponds to the translation axis.)

PROPOSITION 4.3. If X 6F is attracting, then either X 6(StabQ) or there
exists an eigenray p ofH such that X j(p).

Remark. The conclusions are mutually exclusive by Lemma 3.5.

Proof. We repeatedly use equations such as HP(XiQ)- P(Xi)Q, obtained
by combining (w)H Hw and HQ Q.

Let X Xl...xi-.. be an attracting fixed word (in a given free basis gl,..., gn
of F). If XiQ Q for infinitely many i, we have X di(Stab Q). Otherwise we fix
an integer with SiQ Q such that the sequence cx(PXi) is strictly increasing
(see (.) in Section 1).

Recall (Theorem 3) that the action of StabQ on n0(T\{Q}) has finitely many
orbits. Thus there exist d > 1 and w Stab Q such that [Q, wXiQ] and [Q, na(XiQ)]
overlap. We distinguish two cases, depending on whether w is trivial or not.

First assume that w is trivial. Let A be the component of T\{Q} containing
XiQ, and let p be the corresponding eigenray of Ha.
By assumption, the sequence O(p) Cx(PaXi) is strictly increasing. In partic-

ular, notice Xo(p) (PdXi) ^ (a(P+l)dxi). By (BBT2), the distance from So(p)Q to

[(oPdXi)Q,(o(P+I)dxi)Q]- [Hpd(XiQ),H(p+I)d(XiQ)] is bounded by C. On the
other hand, the intersection between [Q, npa(xiQ)] and [Q, n(p+l)a(XiQ)]
[Q, Ha(HPa(XiQ))] is contained in the Ha-eigenray . Furthermore, the length of
this intersection is a constant multiple of 2pa. This implies that the length of
[Q, Xo(p)Q] c p goes to infinity with p; that is, X --j(p) (see Lemma 3.4).
There remains to show that p is invariant under H, not only under Ha. This

follows from Lemma 3.5 since j(p) (j(p)) --j(n(p)), and hence p n(p).
Now we assume that the element w Stab Q is not trivial. In this case we

show X di(Stab Q).
The length of the intersection between [Q, ap(wXi)Q] [Q, Hp(wxiQ)] and

[Q, (ap+a(xi))Q]- [Q, HP(Ha(XiQ))] goes to infinity as p goes to infinity. By
(BBT2) this implies that d(Q, wpQ) goes to infinity, with Wp=aP(wXi)^
aP+a(Xi). This in turn implies that the length of the word Wp goes to infinity.

Write Wp- aP(w)aP(Xi)^ aP+a(Xi) and recall that cx(aP(Xi)) goes to infinity
with p. If the amount of cancellation between aP(w) and aP(Xi) does not remain
bounded, then X is a limit point of the sequence aP(w-1) and belongs to
di(Stab Q). Similarly, if the length of aP(w) ^ aP+a(Xi) is unbounded, then X is a
limit point of P(w) and belongs to di(Stab Q).
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Since ]wpl goes to infinity, the only remaining possibility is that IP(w)l is
bounded. Choose a subsequence Pk such that P(w) is a nontrivial word
v e StabQ, independent of k. We then get vX X since a(Xi) and a+d(Xi)
converge to X as p goes to c. This implies X e 6(Stab Q) since X is a limit point
of one of the sequences v

Let ’(Q) be the set of orbits of the action of Stab (2 on components of T\Q,
and let /-n(Q) c (Q) be the subset consisting of orbits containing a compo-
nent fixed by H.

PRO’OSITIOI 4.4. (1) There exists an injection z" 1()
(disjoint union).

(2) The image ofz is sl(Q) In(Q).
Remark. Assertion (2) is not needed for the proof of Theorem 1.

Recalling that Fix Fix2 and ind() rk Fix + a()/2 1, we get the
following corollary from assertion (1).

COROLLARY 4.5. We have ind() < ind(gQ) + v(Q)/2.

Proof of Proposition 4.4. (1) If an attracting fixed point X of belongs to
di(Stab Q), so does every X’ equivalent to X since Stab Q contains Fix 0t. We map
the corresponding set of classes sCStabQ() bijectively onto a’(0Q) using Lemma
4.2.

If an attracting fixed point X does not belong to i(Stab Q), we map the class
of X to the orbit under StabQ of the component Ax of T\{Q} containing the
points XQ for p large and the associated eigenray p-- Px. To prove that is
well defined and injective on a’()\CStabQ(0), we need to check that Ax and
Ax, belong to the same Stab Q-orbit if and only if X and X’ are equivalent.

If X and X’ are equivalent, then by definition there exists w e Fix0 with
X’-- wX. Equivariance of j (see Lemma 3.5) gives j(wpx wj(px X=
J(Px,), and thus wpx Px,. In particular wAx Ax,.

Conversely, assume that some h e Stab Q maps Ax to Ax,. The intersection of
the rays Px and h-lpx is a nondegenerate segment (Q, Qq. For a e (Q, Q’] close
enough to Q, we have Ha e (Q, Q’], and therefore hHa Hha. But we also have
Hha (h)Ha. This implies that h-l(h) fixes the nondegenerate subsegment
[Q, Ha] of [Q, Q’]. As, by Theorem 2.1, the group action on T has trivial arc sta-
bilizers, it follows that (h)= h. In particular, the isometry defined by h com-
mutes with H. Therefore the fact that Px and h-lpx overlap nontrivially implies
that Px h-lpx We get X --J(Px) =J(h-lpx,) h-X’, and hence X and X’
are equivalent.

(2) To prove assertion (2), it suffices to consider an H-invariant component A
of T\Q, and to show that its orbit under Stab Q belongs to the image of z. Let p
be the H-eigenray contained in A, and X j(p) SF. We now show that X is an
attracting fixed point of . This completes the proof since the class of X maps to
the Stab Q-orbit of A.
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From Lemma 3.5 it follows that (X)= (j(p))=j(H(p))=j(p)= X. By
way of contradiction, assume that X is not attracting. Writing (Xi)= Xk(i)Z
with ]Zi[ < B as in Section 1, there exist arbitrarily large such that k(i) < + p
for some fixed integer p. For these values of i, we claim that d((Xi)Q, [Q, XiQ])
is bounded by a constant independent of i. Indeed

d((Xi)Q, Xko)-pQ) < (B + p) m.ax d(Q, gjQ),

and d(Xk(i)_pQ, [Q, XiQ]) < c by (BBT1) since k(i) p < i.
On the other hand, [Q, (X/)Q] tap [Q, H(XiQ)] c p H([Q, XiQ] c p) has

length 2 times bigger than [Q, XfQ] c p. As the length of [Q, XiQ] c p goes to
infinity as -- oo, this contradicts the above observation. [=]

For later purposes we also need the following fact.

LEMMA 4.6. Let A,A’ be components of T\{Q} belonging to the same StabQ-
orbit. Suppose A is invariant under H and A’ is invariant under mH for some
m e Stab Q. Then there exists c Stab Q such that m c(c-1). (Hence im o t is
similar to .)

Proof Let c be an element of Stab Q mapping A to A’. For a e A close
enough to Q on the H-invariant ray, we write cHa (mH)ca mo(c)Ha. Thus
c-lmo(c) fixes a nondegenerate segment. Since arc stabilizers are trivial, this
implies m 0(-1). [-]

Case 4.B: 2 1. If 2 1, then T is simplicial. In this case we choose T so as
to minimize the number of edges of the quotient graph F T/F.
LEMMA 4.7.

edge.
If H has more than one fixed point, then F T/F has only one

Proof Let e be an edge fixed (pointwise) by H, and let T’ be the tree obtained
by collapsing each component of the orbit of e to a point. This orbit is preserved
by H, so that H induces an isometry H’ of T’ satisfying the commutation equa-
tion (w)H’ H’w with the induced F-action on T’. If F has more than one
edge, the action of F on T’ is nontrivial. This contradicts the choice of T. [:]

Hence for 2 1 we need only to consider three more cases:
(1) H has exactly one fixed point Q;
(2) H has more than one fixed point and F is a segment;
(3) H has more than one fixed point and F is a loop.

Case 4.B1: H has exactly one fixed point Q

PROPOSITION 4.8. There is an injection z () ,3’(oQ).
Since Fix FixQ by Lemma 4.1 we get the following corollary.

COROLLARY 4.9. We have ind() < ind(Q).
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Proof of Proposition 4.8. By Lemma 4.2, it suffices to prove that every
attracting fixed point of belongs to 6(Stab Q). Recall that the action of F on T
is simplicial with trivial edge stabilizers. Bass-Serre theory expresses F as a free
product whose factors are vertex groups and nlF (see [Ser, 1.5.1]). We use this to
get a preferred free basis of F as follows.

Let To c T be a finite subtree containing Q and projecting isomorphically
onto a maximal subtree F0 c F. Orient the edges of F\F0. The basis we con-
struct consists of the element of F naturally associated to each edge of F\F0,
together with bases of the groups Stab V, for V a vertex of To. Such a basis has
the following property. Suppose w F\StabQ, and w’ contains w as an initial
subword. Then the segments [Q, wQ] and [Q, w’Q] intersect in a nondegenerate
segment.
Now let X be an attracting fixed word of (in a preferred basis of F). We

show X di(StabQ). Fix an integer p. Since H is an isometry having a fixed
point, the midpoint of the segment between XpQ and H(XpQ) (Xp)Q is equal
to Q because it is fixed by H (see, e.g., [MoSh, Lemma 11.2.16]). The segments
[Q, XpQ] and [Q, a(Xp)Q] thus do not overlap. For p large, the word Xp is an
initial subword of a(Xp). Our choice for the basis of F then implies Xp Stab Q.
Hence X 6(Stab Q), as required. [--]

Case 4.B2: H has more than one fixed point and F is a segment. Let e [Q, R]
be an edge of T fixed (pointwise) by H. Bass-Serre theory gives a nontrivial de-
composition F Stab Q, Stab R. This decomposition is e-invariant by Lemma
4.1.

PROPOSITION 4.10. (1) We have Fix e Fix et2, Fix e.
(2) There is an injection z: ’(o) (O)
COROLLARY 4.11. We have ind(a) < ind(aQ) + ind(aR) + 1. [--1

Proof of Proposition 4.10. The proof we give is purely algebraic, using only
the a-invariant decomposition of F. We choose a free basis of F, consisting of a
basis of Stab Q together with a basis of Stab R.

Write any finite word v F as a product of subwords belonging alternatively
to both factors. If v is fixed by a, then each subword has to be fixed. This shows
the first assertion.
Now suppose X is any attracting fixed infinite word. If X contains infinitely

many letters from both factors, then it is an infinite product of subwords belong-
ing alternatively to Fix aQ and Fix aR, and X 6(Fix a). This is impossible since
X is attracting. Thus X is equivalent to an infinite word contained in one of the
factors, and we get z using Lemma 4.2.

Case 4.B3: H has more than one fixed point and F is a loop. Let again
e--[Q, R] be an edge of T fixed (pointwise) by H. We now have (by Bass-Serre
theory) F (Stab Q) (t), where is any element such that t(Q) R. Note that
(t)Q (t)HQ HtQ R, so that (t) tu with u Stab Q.
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If there exists t’ with t’(Q)= R and (t’)= t’, we have an -invariant de-
composition as before and the previous analysis yields ind(0t) < ind(tQ) + 1. We
assume therefore that there is no such t’. This implies that u cannot be written
u v(v-1) with v e Stab Q, since otherwise we can set t’ to.

PROPOSITION 4.12. (1) We have Fix 0t FixQ t Fix(iu o aQ) t-1.
(2) There is an injection z: () -, (Q) t9 ad(iu o Q).
COROLLARY 4.13. We have ind(0t) < ind(Q) + ind(iu o Q) + 1. E]

Proof of Proposition 4.12. Choose a free basis of F consisting of t together
with a basis of Stab Q. Any element of F has a unique reduced expression

W O0tel 31 re2 lp-1 tPvp,

where ei--+_ 1 and vi is a (possibly trivial) word not containing t+l. We study
the word (w), paying special attention to the letters t +-1.

Recall that (v) does not contain t+1 and that (t) tu. Thus no new letters
t+ appear in (w). Also note that there can be no cancellation between the p
letters t in (w), since the image of a subword tot-1 is tu(v)u-t-1 (similarly

).
Now assume that w is fixed by . This forces the words vi (1 < < p- 1) to

satisfy equations, whose forms depend on ei and

vi (vi) if w contains t- vit,

1)i UO(Vi)tt-1 if W contains tvit-I

vi u(vi) if w contains tvit,

1) O(/)i)U-1 if W contains -1
vit-1.

The first two equations express that of should belong to Fix(0tQ) or Fix(iu o Q).
On the other hand, the assumption that u cannot be written u v(v-) prevents
the other two equations from being satisfied. Thus the letters t and t-1 alternate
in w. Furthermore, the relation (w)= w also implies v0 FixQ, el 1, and
vp FixQ, ep =-1. Summing up, the words invariant under are precisely
those of the form votvlt-lv2t 1)2q with vi FixQ for even and vi Fix(i o 0tQ)
for odd. We have shown assertion (1).

Proving assertion (2) is now easy. If an attracting fixed word X contains t+

infinitely often, then X is an infinite product votvlt-lv2tv3t-... with the v’s as
above. This implies X e di(Fix ), a contradiction. Thus X is equivalent to a word
Xo not containing t+ , or to a word tXo with no letter t-+ in Xo. The word Xo
is an attracting fixed word of Q in the first case and of i o Q in the second.
Indeed, if (tXo)= tXo, then tuoQ(Xo)--tXo, and therefore Xo uoQ(Xo)--
(iu o oQ)(Xo). Once again we obtain z using Lemma 4.2. [-]
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Notice that results analogous to Propositions 4.10 and 4.12 are true if T has
more than one orbit of edges, provided H fixes each of them.

5. The induction. Let 0,... ,0k be automorphisms of F representing the
same outer automorphism and belonging to distinct similarity classes. We prove
the following inequality by induction on n rk F:

ind(zi)< n- 1.
i=0

This is clear if n 1, so we assume n > 2. We also assume ind(i) > 0 for all
i. Since the index is a similarity invariant, we are free to replace each i by a
similar automorphism when needed.
Apply Theorem 2.1 to 0. We get a tree T and a homothety H T T

with stretching factor 2. If fl--im o with m e F, we associate to fl the map
H--mH. It satisfies fl(w)H--Hw for all w e F (see Remark 2.2). If fl--
ic o o (ic)-1- ic(c-1)o is similar to , we get H/ c(c-1)H cHic-. In
particular, the fixed-point sets satisfy Fix H# c Fix H.
For simplicity we write Hi for H,. We may assume as before that the quotient

graph F T/F has only one edge if 2 1, and some Hi has more than one fixed
point (see Remark 2.2 and Lemma 4.7). By assertion (3) of Theorem 2.1, each Hi
has at least one fixed point. If Q is fixed by Hi, then Stab Q is i-invariant
(Lemma 4.1). We denote by /0 the induced automorphism.

LEMMA 5.1. Suppose Q e T is fixed by both Hi and Hj (i #j), and
rk Stab Q > 2. Then , represent the same outer automorphism of Stab Q and
belong to distinct similarity classes in Aut(Stab Q).

Proof If j ih o i, we have h Stab Q because Hj hHi. Thus and j
represent the same outer automorphism of Stab Q. Now suppose there exists
v Stab Q such that j(g) vi(v-gv)v-1 for all g Stab Q. Then

hi(g)h-1 oj(g) vi(v-1)i(g)i(v)v-1

for g e Stab Q. Since Stab Q has rank greater than or equal to 2, we deduce
h wi(v-), so that (g)= vi(v-gv)v-1 holds for every g e F. This is a con-
tradiction since i and are not similar. ]

As in Section 4, we now distinguish several cases.

Case 5.A: 2 > 1. Each Hi has exactly one fixed point Qi. Recall that
FixH c FixH if/--ic o o (ic)- is similar to . Replacing each i by a
similar automorphism, we may then assume that for j either Qi- Qy or Qi
and Q belong to different F-orbits. Let c T be the set of all points Qi, and let
re: {0,..., k} --* . be the map taking to



FIXED POINTS OF AUTOMORPHISMS OF FREE GROUPS 445

Proposition 4.4 yields injections zi /(ti) -- /(/Q’)u //’(Qi). We denote by
vi(Qi) the cardinality of zi(M(0q)) c /’(Qi). Using Proposition 4.4 and Corollary
4.5, we write

We then have

ind(Q’) < rk Stab Q 1.

This is clear for points Q with rk Stab Q < 1. For other points, it follows from
Lemma 5.1 and the induction hypothesis, as rkStabQ < n- 1 by Theorem 3.
On the other hand,

1 1

/t-I(Q)

because by Lemma 4.6 two components of T\{Q} containing rays invariant
under Hi and Hi, respectively, cannot be in the same Stab Q-orbit if # j.
As a result, we obtain

k ( 1)Eind(i) < E E ind(Q’) + vi(Qi)
i=0 Q. ir-1(Q)

1 v(Q))< Qa(rkStabQ 1 +
<n-1.

The third inequality follows from Theorem 3 since different points of . are in
different F-orbits.

Case 5.B1: 1, and each Hi has exactly one fixed point. The proof is the
same, using Corollary 4.9. One does not need the v terms.
Now we suppose some Hi (say H0) fixes (pointwise) an edge e [Q, R]. Recall

that we have assumed the graph F T/F has only one edge.

Case 5.B2: Ho has more than one fixed point, and F is a segment. Note that
for > 0, the map Hi has only one fixed point Qi. Otherwise we could replace
i by a similar automorphism and get Hi to fix e. (Recall that there is only one
F-orbit of edges.) This would contradict triviality of edge stabilizers since Hi
mH for some nontrivial m F.
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The fixed point Qi cannot be the midpoint of an edge because Stab Qi would
be trivial (F acts without inversions) and Proposition 4.8 would imply ind(i) <
0. Thus Qi belongs to the orbit of either Q or R. Changing i within its similarity
class if needed, we may assume Qi Q or R.
Taking r to be the obvious map from {1,... ,k} to (Q,R}, we get, by Corol-

laries 4.9 and 4.11,

k

ind(i) < ind() + ind() + 1 + ind() + Z ind(/R)
i--0 ier-l(Q)

< 1 + (rk Stab Q- 1) + (rk Stab R- 1)

<n-1.

The third inequality comes from Lemma 5.1 and the induction hypothesis, as F
is isomorphic to the nontrivial free product Stab Q, Stab R. (See the discussion
in Section 4.)

Case 5.B3: Ho has more than one fixed point, and F is a loop. Arguing as in
the beginning of case 5.B2, we may assume that H0 fixes an edge e [Q, R] and
that Q is the only fixed point of Hi for > 0. (Now there is only one F-orbit of
vertices.)
With the notation of Section 4, we have F--(StabQ)., (t) with 0(t)= tu,

u e Stab Q. If may be chosen with 0(t) t, we simply write

k ky ind(ai) < ind(a)+ 1 +Z ind(a?) < rkStab Q n- 1.
i=0 i=1

Otherwise we recall that u cannot be written u--vo(v-1) with v e Stab Q, and
we apply Corollaries 4.9 and 4.13. We get

k ky ind(i) < ind() + ind(iu o ot2) + 1.
i=0 i=0

There is nothing to prove if Stab Q has rank 1. Otherwise we argue as follows.
By Lemma 5.1, the automorphisms 00t2,0q,...,0k,iuo o0 represent the same
outer automorphism of Stab Q. If we show that no two of them are similar, the
inductive proof is complete, since we can write

k

)_ ind(ei) < rkStabQ- 1 + 1 n- 1.
i=0
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By Lemma 5.1 we need only check that iu o o is not similar to any of the
others. Arguing as in the proof of Lemma 5.1, we first see that it is not similar to

since

iu o Oo -iv o tXo o (iv)-1 ==> u vtx0Q(v-1).

Then we note that iu o o is similar to 0 in Aut(F) since iu o o (it) -1 o ix0 o it.
It follows that i,, o and e are not similar for > 1. By Lemma 5.1, i,, o e and

are not similar in Aut(Stab Q).

6. Discussion and remarks. In this last section, we want to discuss some
properties of certain classes of automorphisms of F, with respect to their index.
We do not give formal proofs but rather indicate the reason for our claims;
details may be worked out elsewhere

6.1. First we recall the definition of the index of an outer automorphism
of the free group e Out(F), induced by e Aut(F). Let 6e() denote the set of
similarity classes [’] of automorphisms ’ inducing the outer automorphism. We define

ind() :: E max(ind(’), 0).
[’1 (a)

Our main result, Theorem 4, is equivalent to the inequality

ind() < rk(F)- 1 (6.1)

for all e Out(F).
Next we observe that the techniques for computing a basis of the fixed sub-

group, as well as representatives for each equivalence class of attracting fixed
points, described in [CL1] for positive automorphisms, can be extended to all
automorphisms of F. In [CL1] the only specific property of positive automor-
phisms used is that for any w e F, there is an obvious lower bound for the length
of k(w) for any k > 1. A similar bound can be deduced for arbitrary e Aut(F)
if we use a relative train track representative for as constructed in [BH]. This
gives the following, which can be used to verify some of the statements below.

There is a combinatorial algorithm that computesfor any Aut(F) the indices
ind() and ind().

6.2. There is an obvious question as to when the inequality (6.1) is an equal-
ity. Using Theorem 4 together with standard Nielsen-Thurston theory, one can
compute the index of any #eometric automorphism, that is, an automorphism
that is induced by a homeomorphism of a surface M with boundary, where
nlM F. For example, if is induced by a pseudo-Anosov automorphism that
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fixes each separatrix at every singularity of the stable foliation, then ind(&) is
indeed equal to z(S) rk(nlS) 1. These arguments extend to the case where a
is a multiple Dehn twist on disjoint closed curves, possibly with pseudo-Anosov
components on the complementary subsurfaces. This shows the following. Every
geometric automorphism Out(F) has a power k with

ind(&k) rk(F)- 1.

This fact was used in earlier work of the fourth author to describe new classes
of nongeometric automorphisms with properties very similar to those of geo-
metric ones. Also, from the above discussion it is easy to construct geometric a’s
that do not satisfy equality in (6.1).
Dehn twists on surfaces have been generalized in [CL2] to Dehn twist auto-

morphisms of free groups. It is shown in [CL3] that every Dehn twist auto-
morphism/) e Out(F) has maximal index ind(/)) rk(F) 1. This implies (see
[CL3]): Every linear growth automorphism Out(F) has a power k with

ind(&k) rk(F)- 1.

Recall that is said to have polynomial growth of degree < k if, for every
9 F, there exists C such that et(9) is conjugate to an element of length < Cnk

for every > 1 (and also for some, hence any, e representing ).

We now want to discuss how or why the index of an outer automorphism can
be nonmaximal. Our proof of Theorem 4 gives rather explicit information about
this, and we can distinguish between two qualitatively different phenomena.

6.3. Given two automorphisms e e Aut(F’) and fl e Aut(F"), we can com-
pose them canonically to a new automorphism e e Aut(F’ F"). On the level
of outer autoorphisms, however, there is no such canonical composition.
Given and , one first has to choose representatives a’ and ’, and then one

can define a freely composed outer automorphism e’, fl’. If one has both
ind(e’) > 0 and ind(fl’) > 0, then one obtains

ind(t’ fl’) ind(e’) + ind(fl’) + 1, (6.2)

which gives maximal index for ’, fl’ if both fi and/ have maximal index. If,
however, the index of e’ or fl’ is negative, then the index of differs from
the maximal value (6.2) by 1/2 or 1.

Similarly, for e e Aut(F), the HNN-composition + Aut(F (t)) given by
+(w) w(w)v-1 if w e F, e+(t) tu (v, u F) (which has been considered in
the cases B3 of Sections 4 and 5) "connects" similarity classes of with varying
possibilities for their index (according to the choice of v and u). Again, the index
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of &+ e Out(F (t)) can drop by 1/2 or 1 from the maximal value

ind(+) -ind() + 1.

As an immediate consequence, we obtain the existence of outer automorphisms
with all positive powers of very small index. For example, for a - a, b ba,
Ck --* bkckbk (k 1,..., m), one has rk(F) m + 2 and ind(at) 1 for all t > 1.

It follows from [BH] that has exponential growth if for some stratum of
some (and hence any) relative train track representative of a, the transition
matrix has Perron-Frobenius eigenvalue strictly bigger than 1. Otherwise, after
possibly refining the strata structure, every transition matrix is either zero or a
permutation matrix. In this case, has polynomial growth, and it is not hard to
see that a suitable power of arises precisely as in 6.3 as iterated free composi-
tion or HNN-composition of Dehn twist automorphisms. One can show that at
each composition the degree of polynomial growth can be raised by 1, but only
at the expense of strictly decreasing the index of the composed automorphism
with respect to the maximal possible composition value. This shows that every
polynomially but nonlinearily growing (and hence nongeometric) outer automor-
phism has nonmaximal index

3
ind(g) < rk(F) 2"

6.4. Let us now turn to the second basic phenomenon that produces non-
maximal index of an outer automorphism.

If "commutes" with a homothety H of an R-tree T, as in Theorem 2.1,
then by the analysis of Section 5 the index of is bounded by the index
ind(T) of the tree T. This is defined as the maximal value of the sum
=l(rkStabQe + v(Qe)/2- 1), which appears in Theorem 3. (See [GL], which
considers i(T)= 2ind(T).) In [GL] a distinction is drawn between the ease
when the action of F on T is ffeometric, in which case the index of T is shown to
be rk(F)- 1 (i.e., maximal), and the case when T is noneometric, where one
proves 1/2 < ind(T) < rk(F) 3/2.
A prototype of geometric actions is given by pseudo-Anosov automorphisms

and the R-tree dual to an invariant foliation. However, somewhat surprisingly,
there are also nongeometric automorphisms for which the invariant R-tree is
geometric but not simplicial. These paraffeometric automorphisms can be found
even among irreducible automorphisms with irreducible powers (i.e., no t with
t > 1 leaves a proper free factor of F invariant); see [BF] or [Le]. The para-
geometric automorphisms deserve special attention, as they seem rather atypical
among all irreducible ones. It is shown in [BF] that precisely the nongeometric
and nonparageometric irreducible automorphisms admit train track representa-
tives without nontrivial Nielsen paths. Combining their result with ours is sum-
marized in the following statement.



450 GABORIAU, JAEGER, LEVITT, AND LUSTIG

Assume that the outer automorphism Out(F) is irreducible. Let f:z z
be a train track representative for with the least number of indivisible Nielsen
paths among all such representatives. Let T be the invariant tree obtained from
iterating f, as in Section 2. Then precisely one of the following two cases occurs.

(i) The index of satisfies

1 3< ind(t) < rk(F)
2

for all > 1. The action of F on T is nongeometric. The train track z has
no nontrivial Nielsen path with respect to f or to any ft.

(ii) The index of & satisfies

ind(t) rk(F)- 1

for some t > 1. The action of F on T is geometric. The train track z has a
nontrivial Nielsen path with respect to ft.

It is shown in [BF] that in case (ii), there is precisely one f-orbit of nontrivial
indivisible Nielsen paths and that this path is closed precisely if a is geometric.
The second author has shown that (contrary to the geometric case!) in the para-
geometric case, the similarity class of that representative a Aut(F) of , which
is given by the Nielsen path, is not an invariant of , but can change when pass-
ing over to a different train track representative.

6.5. We now turn again to ordinary automorphisms rather than outer ones.
For any Aut(F), Theorem 1 gives

0 < rk(Fix()) < rk(F) and 0 < a(a) < 2rk(F).

We are interested in the case where one of the two summands rk(Fix(a)) or a(a)
for the index becomes maximal.
Assume rk(Fix(a))- rk(F). As a consequence we obtain a(ot) --0 for any

t > 1. That is, a has no attracting fixed point in 6F, by Theorem 1. Hence, by
Lemma 4.2, there is no a-invariant tree T as in Theorem 2.1 with 2 > 1, as it fol-
lows from Theorem 3 [GL] that /n’(Q) /(Q) for some t > 1. Thus we can
decompose a as in the cases B2 or B3, since the cases ]31 yield immediately that
rk(Fix(a)) < rk(F). We now consider the restriction of a to the vertex group
(cases B3) or to the vertex groups (cases B2) and observe that they also must have
fixed subgroup of maximal rank. Hence (by inverting the HNN-composition
process described in Section 6.3) we can proceed inductively to obtain a "normal
form" for such automorphisms; see [CT] and [CL2].
Assume that the action on the invariant tree (satisfying 2 > 1) is free and that a

is replaced by a sufficiently high power, so that H fixes all orbits of branch
points and all orbits of directions at those branch points. Then one obtains
ind(&) ind(T). If, furthermore, T has only one orbit of branch points, then any
automorphism a, with- and with the property that H, fixes one of the
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branch points, satisfies

ind(’) ind(T).

Thus, if the F-action on T is geometric, one has a()= 2rk(F), which is
the upper bound. Such examples can be constructed from an irreducible para-
geometric automorphism through subsequent HNN-compositions chosen so as
to connect all similarity classes with positive index (see Section 6.3). Notice,
however, that the resulting automorphism of a free group of higher rank is, of
course, no longer irreducible. An irreducible automorphism with a(a) 2rk(F)
must be represented by a train track map for , which has one nonclosed Nielsen
path connecting the only two fixed points of the map with positive index. Some-
what surprisingly, such automorphisms exist. An example is given by a -,

aac-laac-lb-1, b - bca-la-1, c -, ca-1

6.6. Finally, we compare ind() to ind(&-l). It is easy to find examples with
ind() ind(-l), and hence ind() ind(-1) for some representing .
Such examples occur even among irreducible automorphisms with irreducible
powers. In particular, there are positive automorphisms satisfying ind()=
ind() n-3/2, while -1 is parageometric and hence satisfies ind(-t)
n- 1 for some t > 1. An example is the automorphism :a -, abe, b -, bab,
c -, cabc, which is the inverse of the one given in Section 6.5. Notice that this
example also satisfies 2() 2(a-). For further examples satisfying this last
inequality, see [BH].

6.7. Notice that the automorphism 3 from Section 6.6 has eleven fixed
points on 6F, five of them attracting and six repelling. More generally, one can
show that n al H al...an, ai -* aial...ai (2 < < n) has 4n- 1 fixed points
on 6F, 2n- 1 attracting and 2n repelling. We do not know whether the maximal
value 4n permitted by Corollary 2 may be achieved.

[BF]
[BH]

[CL1]

[CL2]

[CL3]

[CT]

[Co]

[CDP]
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