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A DENDROLOGICAL PROOF OF THE SCOTT CONJECTURE
FOR AUTOMORPHISMS OF FREE GROUPS

by D. GABORIAU, G. LEVITT and M. LUSTIG

(Received 26th July 1996)

Let a be an automorphism of a free group of rank n. The Scott conjecture, proved by Bestvina-Handel, asserts
that the fixed subgroup of a has rank at most n. We give a short alternative proof of this result using R-trees.

1991 Mathematics subject classification: 20E05, 20E08, 20F32.

Introduction

In this note we give a short alternative proof of the following much celebrated result
of Bestvina-Handel [2], conjectured earlier by Scott:

Theorem 1. For every automorphism a of a free group Fn of rank n > 1 the fixed
subgroup Fix a — {w e Fn\ a(w) = w} has rank rk Fixa < n.

After a preliminary version of this note was written, other alternative proofs of this
result have been given in [10] and in [9]. A stronger inequality, which also takes into
account infinite fixed words, is given in [6] (see the remark at the end of this paper).

The essential ingredients in our proof are the following two theorems. The first
one, proved by the third author in [8], is a fixed point theorem for the action of outer
automorphisms of Fn on the compactification of Culler-Vogtmann's outer space. It
may be stated as follows.

Theorem 2 [8]. Given any automorphism a of Fn, there exists a nontrivial minimal
action of Fn on an R-tree T, with trivial edge stabilizers, whose length function
I : Fn -*• R+ satisfies t o a = XI for some X > 1. If X — 1, then T may be taken to be a
simplicial tree.

Since the paper [8] was written, short proofs for the existence of a fixed point have
been obtained. As none of them is presently published, we give one in an Appendix,
establishing triviality of edge stabilizers (a key point in our approach).

The second theorem we use here is due to the first two authors [7]. It is an inequality
about branch points in an R-tree equipped with a small action of Fn. We state the
special case that will be needed.
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326 D. GABORIAU, G. LEVITT AND M. LUSTIG

Theorem 3 [7|. Let T be an R-tree with a nontrivial, minimal Fraction whose edge
stabilizers are all trivial. Given p , , . . . , pm e T belonging to distinct orbits, the isotropy
subgroups Stab p,- satisfy the inequality

rkStabp,--) < n- 1.M

In particular, rk Stabp < n — 1 for every p e T.

This follows directly from Theorem III.2 of [7]: since edge stabilizers are trivial, we
have t>i(p) > 0 for every p e T.

Our proof of the Scott conjecture consists of two parts. In Part 1, we try to prove
Theorem 1 by induction on n, using Theorem 2 and analyzing the action on T thanks
to Theorem 3. We succeed in all cases but one. In the last case we obtain

rk Fix a = rk Fix a." + rk Fix (/„ o a"),

where a." is some automorphism of Fn_, and iu is conjugation by u e Fn_, : (iu o a°)(g) —
ua\g)u-\

This makes it necessary to study several automorphisms simultaneously. Say that two
automorphisms a, ft of Fn are similar if there exists c e Fn such that ft — ic o a o (ic)~'. In
other words, one has fi(g) = cx(c~lgc)c~] for every g e Fn. Notice that similar auto-
morphisms induce the same outer automorphism and have conjugate fixed subgroups.

In Part 2 we extend the analysis performed in Part 1, so as to prove by induction
on n the following strengthening of Theorem 1:

Theorem 1'. Let a0,. . . , a* be automorphisms of Fn representing the same outer
automorphism q> and belonging to distinct similarity classes. Then

- 1) < n - 1.

(This theorem is only superficially stronger than Theorem 1. It follows by applying
Theorem 1 to the automorphism of Fn * Fk equal to <x0 on Fn and sending the i-th
generator t, of Fk to ttut where a, = iu. o a0.)

In Part 3 we discuss equality in Theorems 1 and 1'.

1. Analyzing a single automorphism

We try to prove Theorem 1 by induction on n, noting that it is trivial for n — 1.
Let a be an automorphism of Fn, and let T be given by Theorem 2. If X = 1, then T is
simplicial. In this case we require that Fn act on T without inversions, and we choose
T so as to minimize the number of edges of the quotient graph F = T/Fn.
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It follows directly (as in [8, §4]) from the uniqueness result for non-abelian actions
(see [5]) that there exists a homothety H : T -*• T with stretching factor X, which
commutes with a in the sense that for every w e Fn one has

<x(w)tf = Hw (1)

as maps from T to T.

1.1 If H has no fixed point, then rk Fix a < 1.
Let w e Fix a, w ^ l . Consider its characteristic set Cw: it is the axis of w if w acts

as a hyperbolic isometry, or the unique fixed point of w if w is elliptic (w has only one
fixed point because edge stabilizers are trivial). Since H commutes with w, it preserves
Cw. This is possible only if X — 1 and H, w are hyperbolic isometries with the same axis.
This implies rk Fix a < 1 since otherwise some nontrivial commutator would have a line
of fixed points.

1.2 If H has a fixed point Q, then StabQ is a-invariant.
From wQ = Q it follows <z(w)Q — <x(w)HQ = HwQ = Q.
We write ofi for the automorphism of Stab Q induced by a (note that Stab Q is also

a"1-invariant).

1.3 If Q is the only fixed point of H, then StabQ contains Fix a.
From a(w) = w it follows HwQ — <x(w)HQ = wQ, so that wQ = Q if H has only one

fixed point.

1.4 If H has at most one fixed point, for instance if X ^ 1, we get rk Fix a < n — 1
by applying the induction hypothesis to ae (recall that Stab Q has rank < n — 1 by
Theorem 3).

1.5 From now on we assume that H is an isometry which has more than one fixed
point. Recall that T is a simplicial tree, chosen to minimize the number of edges of
T = T/Fn. Let e = [a, b] be an edge fixed (pointwise) by H.

1.6 Under the assumptions of 1.5, the graph T has only one edge.
Let T be the tree obtained by collapsing each component of the orbit of e to

a point. This orbit is preserved by H, so that H induces an isometry H' of T'
satisfying the commutation equation (1) with the induced Fraction on T. If T has
more than one edge, the action of Fn on T is nontrivial. This contradicts the
choice of T.

1.7 First assume that F is a segment. Then Bass-Serre theory gives a nontrivial
decomposition Fn = Stab a * Stab b. This decomposition is a-invariant by 1.2, so that
Fix a = Fix a" * Fix a6. The result follows again by induction.
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1.8 Finally, we assume that F is a loop. Then Fn = (Staba)* (r), where t is any
element such that t{a) = b. Note that a(t)a — <x(t)Ha — Hta = b, so that <x(t) = tu with
u e Stab a. If t may be chosen with a(t) = t, we have an a-invariant decomposition as
before.

1.9 Otherwise <x(r) = tu for some u e Stab a that cannot be written u = ua(ir') with
v e Stab a. Direct computation, or Bass-Serre theory applied to the action of Fix a on
Fix//, yields Fix a = Fix a" * t Fix(i'u oa°)r' , so that the induction breaks down here.
This method only shows rk Fix a < 2""1.

2. Analyzing several automorphisms

Let <p be an outer automorphism of Fn. Let T and k be as in the beginning of Part
1, so that I o q> = kt. If k = 1, recall that T is chosen so as to minimize the number of
edges of F.

For any a e Aut (Fn) representing q>, there is a homothety Hx : T —>• T such that
a(w)//a = //aw (weFJ .

2.1 If ft = ih o a is another representative of <p, we may (and will) take Hf — hHx.
Since Fn acts on T with trivial edge stabilizers, no nondegenerate arc e c T may be
fixed point wise by both Ha and H^'ifh^ 1.

2.2 If /? = ic o a o (Q~' is similar to a, we get Hf, = ca(c~')//a = cH3c~]. In particular
= c Fix//a.

2.3 Let a0,..., <xk be representatives of q> belonging to distinct similarity classes.
Denoting r(a) = rk Fix a — 1 we now prove the following inequality by induction on n:

i=0

It is clear if n — 1, so we assume n > 2. By 1.1 we may assume that each //, = Hx.
has at least one fixed point.

2.4 Suppose g e T is fixed by both //, and Hj(i^j). Let a? and ctf be the
automorphisms of StabQ induced by a, and a, (see 1.2).

/f rk Stab Q > 2, f/ie/i ap, af represent the same outer automorphism of Stab Q and
belong to distinct similarity classes in Aut(Stab Q).

If Xj — ih o a,, we have h e StabQ because //; = hH{ (see 2.1). Now suppose there
exists v e StabQ such that a;(g) = vtXj(v~}gv)v~] for all g e StabQ. Then
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for geStabQ. Since StabQ has rank > 2, we deduce h = ua,(ir') so that
a;(fi0 = vat(v~l gv)v~j holds for every g e Fn. This is a contradiction since a, and a; are
not similar.

2.5 First assume that each Ht has exactly one fixed point Q, (e.g., if X ^ 1).
Replacing each a, by a similar automorphism, 2.2 lets us assume that for i^j either
Qi = Qj o r Q,< Qj belong to different orbits. Let Q c T be the set of all points Qt and
n : [0,..., k] -*• Q the map taking i to (?,.

We then write

i=0
E Stab e -

The first equality comes from 1.3. The first inequality is clear for points Q with
rk StabQ < 1. For other points it follows from the induction hypothesis thanks to 2.4.
The second inequality is Theorem 3 since different points of Q are in different
Fn-orbits.

2.6 If some Ht (say Ho) fixes (pointwise) an edge e = [a, b], then F = T/Fn has only
one edge by 1.6. Using 2.1 and 2.2 we see that for i > 0 the map //, has only one fixed
point Qj. By 2.2 we may assume Q, = a or b (unless Q, is the midpoint of an edge,
but then Fix a, is trivial by 1.3).

2.7 First assume that F is a segment. Using 1.7 we write r(a0) = 1 + r{cQ + r(aj).
Taking n to be the obvious map from {1, . . . , k} to {a, b}, we then get as in 2.5:

J2 K«.) = i + K«S) + E rw)+r(ao) + E r(a?)
i=0 i6n-'(<i) ieji-'(b)

< 1 + rk Staba - 1 + rk Stabfc - 1 = n - 1.

2.8 If F is a loop, we assume Q, = a for every i > 1. We study a0 as in 1.8 and
1.9. In the situation of 1.8 we argue as in 2.7. In the situation of 1.9 we get:

i=0

There is nothing to prove if Stab a has rank 1. Otherwise we argue as follows. The
automorphisms a^,a",..., a.ak, iu o aj represent the same outer automorphism of Stab a.
The inductive proof will then be complete if we show that no two of them are
similar.
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By 2.4 we only need to check that iu o a.% is not similar to any of the others. Arguing
as in 2.4 we see that it is not similar to a?0 since otherwise we would be in the situation
of 1.8. Now we note that iu oOQ is similar to a0 in Aut(Fn) since iu oa,, = (i,)"1 o ^ o /,.
It follows that iu o a0 and a, are not similar for / > 1. Using 2.4 we see that iu o a£ and
ot° are not similar. •

3. Equality

Suppose equality holds in Theorem 1'. Perform the analysis of Part 2. We have
shown that case 2.5 is impossible. In case 2.7 (resp. 2.8), equality holds in Stab a and
Stabb (resp. in Stab a). Furthermore both a|J and ajj (resp. <x"0 and iuoao) fix nontrivial
elements. An easy induction then yields the following result:

Theorem. Let <x0,..., <xk be automorphisms of Fn representing the same outer auto-
morphism <p and belonging to distinct similarity classes. 7/" XZi=o(r -̂ Fix a,- — 1) = n — 1 and
n > 2, then some a, with rk Fix a, > 2 fixes an element of a free basis of Fn.

Corollary [4]. Iftx€ Aut (Fn) satisfies rk FixFn — n, then ix fixes an element of a free
basis of Fn.

If n > 2, one may require in this corollary that the fixed basis element belong to an
a-invariant free factor of rank n — 1.

Remark. In connection with the paper [3], the third author has conjectured some
years ago the following strengthening of Theorem 1':

Fix a,
•=o V

, - 1 + ^a(a,) ) < n -
2 /

where a(a,) denotes the number of attractive fixed points at oo of a, (see [3]). A proof
of this conjecture has been obtained in joint work with A. Jaeger, see [6]. The paper [6]
uses the analysis presented here, but it is much more involved and its main emphasis
is on new geometric techniques.

Appendix

In this appendix we provide a proof of Theorem 2. We follow closely the argument
sketched in [1] for irreducible automorphisms, using the existence of (not necessarily
stable) train track representatives as given by Theorem 5.12 of [2], but not the main
body of Bestvina-Handel's approach (indivisible Nielsen paths, etc.).

Let (j> be the outer automorphism associated to a. By [2, Theorem 5.12], we
may represent 0 by a relative train track map / : T -» T, where T is a finite graph
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without vertices of valence 1 with 7t|T~Fn, and / respects a maximal filtration
T0 C Ti C ... C Tr = T. Furthermore there exists a nonzero length assignment L(e) > 0 for
the edges e of T, and a constant A > 1, such that for p > 1 one has L{f(e)) = k'LAje) for
every edge e and L(/(y)) < L(y) for every loop y; here L(.) denotes the length of the
shortest representative in the homotopy class (relative to endpoints). The function L
comes from the Perron-Frobenius eigenvector of the (irreducible) transition matrix
M(/|tXtr ,) and A is the corresponding eigenvalue, see [2].

If A = 1, then the transition matrix is a permutation matrix, and we let T be the
simplicial R-tree To obtained by lifting L to the universal covering of T.

If A > 1, we consider the length function £0 of the action of Fn on To, the non-
increasing sequence of length functions £„ = jr(£ o a"), and the limit lx. This limit
satisfies I^OCL — ki^. By [5] either it is identically 0, or it is the length function of an
action of Fn on an R-tree T whose edge stabilizers are cyclic or trivial. There remains
to show that lx is not identically 0, and that edge stabilizers are trivial.

Let e be an edge with L(e) > 0. Since L(/P(e)) = kpL(e) tends to infinity and T is
finite, we can find a reduced loop y which is a subpath of some f(e), with L(y)
arbitrarily large. The image /(y) is a loop, which is reduced except possibly at its
basepoint:/(y) = 5y'5~l, where y' is a reduced loop. Since / is a homotopy equivalence
of a finite graph, there is a bound C, depending only on / , for the simplicial length
of <5. Setting C = Cmax(L(e,)) we obtain £(a(y)) = L(y') > AL(y) - 2C = kt(y) - 2C.
Similarly we get £(a(a*(y))) > A£(a"(y)) - 2C for q > 1, hence ^(y) > 0 if L(y) is large
enough. This proves that l^ is not identically 0.

To prove triviality of edge stabilizers, we may assume that the action of Fn on T is
minimal. Let H be the homothety introduced in Part 1. Let c c T be a segment fixed
by some nontrivial w e Fn. Let s > 1 be the largest integer such that w is an s-th power.
Since the length of Hk(c) grows arbitrary large with k and there exists a finite collection
of segments whose union meets every orbit, we can find, for sufficiently large k,
disjoint non-degenerate subarcs c0, . . . , c, of Hk(c) such that c, = U;C0 for some

, )
The element w' = a*(w) fixes Hk(c). Since w', », , . . . , vs all have different actions on

c0, there exists i such that u, and w do not generate a cyclic subgroup of Fn. Then w'
and V^W'VJ generate a free subgroup of rank 2 which fixes c, pointwise, contrary to the
fact that edge stabilizers are cyclic or trivial.
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