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COMPLETE MINIMAL SURFACES WITH
LONG LINE BOUNDARIES

R. LANGEVIN, G. LEVITT, AND H. ROSENBERG

In this paper we will study complete minimal surfaces (CMS’s) bounded by
lines in R 3. By complete we mean that a path that leaves every compact subset of
a manifold has infinite length, even if the manifold has boundary. We will prove
Bernstein-type theorems for such surfaces. For example, we prove that if M is a
CMS whose interior is a graph over a square J in the (x, y) plane, and if the
boundary of M is composed of the four vertical lines over the vertices of J, then
M is Scherk’s surface. Another theorem of this type that we prove is: Let M be a
CMS whose interior is a graph over an infinite strip J in the (x, y) plane, and
suppose 3M is composed of two vertical lines over points of tgJ. Then M is part
of a helicoid. We obtain other results of this nature.
Minimal surfaces bounded by lines have been studied extensively. A line L on

a minimal surface in R3 has an intrinsic meaning: M is invariant by the
symmetry of R through L (the reflection principle), hence L lifts to a geodesic
in the universal conformal covering space of M, with the Poincar6 metric.

In his memoir [5] Riemann found a means to construct minimal surfaces with
boundary a given polygon, where the sides of the polygon could be short or long
(i.e., of finite or infinite length). His technique works for polygons with up to four
sides. The contemporary reader may interpret Riemann’s statements of theorems
as announcing unicity of CMS’s with given polygonal boundaries (see Darboux
[2], pp. 491-492); however, the paper of Riemann only addresses the problem of
existence.

Serret found an infinite family of CMS’s with boundary two lines, each
example distinct from a helicoid and simply connected [7]. Riemann found such
examples that are not simply connected, modelled on a punctured torus [5].
Jenkins and Serrin consider the Plateau problem over convex compact domains
D in the plane where the data on tgD is discontinuous [3]. More precisely,
suppose OD is a polygon Ax, Bx, A2, B2,... A,, B, (in the order indicated) and
one desires a minimal surface M that is a graph over int D and takes the values
+ on each A;, -o on each B (this implies OM is the set of lines over the
vertices of D). They prove that M exists and is unique provided ETIAeI ETIBI,
where [A[ means the length of A. We will prove c(M) is finite.

It would be interesting to know whether their techniques work on noncompact
domains D.

I. The helicoid. The helicoid M is a CMS modelled on C having a Weierstrass
representation g(z)= e, to -iae dz, a real. M is invariant by a vertical
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FIGURE 1

translation by a distance a and the quotient minimal surface 3r in R 3/Z is an
embedded CMS of total curvature 4r, modelled on a two-punctured sphere, with
a Weierstrass representation: (z) z, (z) iadz/z 2.
We take the generating lines of M to pass through the x axis, and the x2 axis

to be a generating line D2. Let D be the image of D2 by the vertical translation
by a and let M0 be the part of M bounded by D1 U D2. Then int M0 is a graph
over the infinite strip B in the (xl, x3) plane bounded by the two lines A, Ag_
with A C3 Di a point for 1, 2 (Figure 1).

THEOREM 1.1. Let SO be a CMS bounded by parallel lines L1, L2. Suppose
int So is a graph ooer the infinite strip B and L1, L2 are orthogonal to the plane of
B; L N A a point for 1, 2. Then So Mo (up to translation); in particular,
the points L f3 A are the extremities of a segment of B, orthogonal to OB.

Proof. The reflection principle for minimal surfaces bounded by lines permits
us to construct a CMS S in 3 by reflecting SO through its line boundaries, and
then continuing to reflect each of the surfaces obtained through their line
boundaries. S is invariant by a translation of (for which So, together with its
reflected image through L2, is a fundamental domain). The quotient space S of S
by this translation is a CMS in 3/Z. We shall prove 1.1 by showing that
S the helicoid r.

In [6], we show that has a Weierstrass representation (, ). Clearly, the
Gauss map g of S passes to the quotient, and it’s easy to check that to does as
well.
Now, Osserman has proved that if N is a CMS in t that is either infinitely

connected or hyperbolic, then the Gauss map of N assumes every value infinitely
often, with the possible exception of a set of capacity zero [4]. We remark that
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this theorem applies equally well to CMS’s in quotient spaces" R modulo a
group of translations: the proofs in Lemma 2.1 and Theorem 2.2 of [4] work for
the quotient minimal surface with the induced Weierstrass representation. This
will enable us to prove is conformally a two-punctured sphere and has finite
total curvature.

Clearly, our graph hypothesis implies is topologically a two-punctured
sphere. Hence, to show is conformally a two-punctured sphere, it suffices to
show there is a set of positive capacity that is not assumed infinitely often by the
Gauss map of .

Let C be the great circle x2 + x32 1 on the Riemann sphere. We claim each
point of C is assumed at most once by , and since the capacity of C is positive,
this proves is conformally a two-punctured sphere.

First observe that our graph hypothesis implies g-(C) L t.) L2, so we need
only show that g is injective on L U L2. Let p L1. The tangent plane P to S

_1.at p contains L1, and L is parallel to the x2 axis, so S intersects the plane x2
at p in a curve C(p). The tangent to C(p) projects to a direction C’(p) in B. As
p traverses L monotonically, the direction C’(p) (based at the point L B)
turns monotonically, since int S is a graph over B. Since g(p) is orthogonal to
C’(p), this proves g is injective on L, as desired.

Consider a puncture of . If z were an essential singularity of , then would
assume every value infinitely often, with the possible exception of two values.
Since this is not true of C, we have z a removablesingularity. Thus extends to
a meromorphic map on the Riemann sphere and S has finite total curvature.
We orient (3 so that C projects to the imaginary axis by stereographic

projection, and we translate M in the x direction so L1 coincides with the x2
axis. The tangent plane to S along L U L2 is never horizontal because at a p6int
p of L U L2 where the tangent plane T is horizontal, the graph hypothesis
implies that M is on one side of T near p, so M would equal T by the boundary
maximum principle. Hence, g misses 0 and 00. We_know is meromorphic on
the conformal two-point compactification (a sphere S) of S and -(C) c L t
L2, so (L1 U L2) is the entire imaginary axis less the point 0 (: S C u
( oo } is surjective).

Let L L2c S; Y. is a Jordan curve that separates S into two discs
E, E2. The graph condition implies that the normals to S on Ex point into one
component of S2- C, and that the normals along E2 point into the other
com_ponent. Since each component is a hemisphere, it follows that the degree of
g,: S S 2 is_equal to the degree of ,: E C. This latter degree is 1. Hence we
can assume S is parametrized, so that ,(z) iz and the punctures are 0, 00.

The form has no zeros or poles in C 0, hence (z) cz dz, Z/.
For notational convenience, we now omit the bars on all the data of S.
We calculate the residue at 0 of the Weierstrass form 3 of S:

Res(3) -2rc if -2

=0 if 4: -2.
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Since S is periodic, we have Re(Res (I)3)= 2a. Hence -2 and Re(c)= 2a.
Since g(z)= iz and g takes imaginary values only on L t2 L_, we have L
contained in the real axis. Hence 0 x3(L1) Re fLxtI)3 Re(c/lnltl), and this
implies that c is real.

Thus, S has the Weierstrass representation of the helicoid, and this completes
the proof of 1.1.

Remark. Theorem 1.1 remains true if L1 is a boundary line of B and L2 is a
line orthogonal to the other boundary line B, for then the reflection of S through
L yields a surface S’ satisfying the hypothesis of 1.1; L2 is reflected to a line L
parallel to L2 and int S’ is a graph over the strip B U B’, where B’ is the strip B
reflected across L1.

The theorem is also true if L and L2 are the boundary lines of B, for then the
successive reflections of S yield a minimal surface that is a graph over the entire
plane, hence it is a plane by Bernstein’s theorem. Similarly, if L is parallel to L,
M is a plane.

Now we will study some other configurations of Zl, L_.

THEOREM 1.2. Let L, L2 be nonintersecting lines making an angle a. Let P be
the plane orthogonal to L and containing the common perpendicular A to L and
L2. Let B be the infinite strip in P bounded by the two lines orthogonal to A passing
by the points E and F of intersection of A with L, L2 (Figure 2). Then a CMS So
offinite total curvature with OSo LI U L2 and int SO a graph over B is part of a
helicoid, or a plane.

Remark. We believe the hypothesis of finite total curvature is not necessary
for this theorem.

FIGURE 2
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We would like to thank R. Krust and P. Collin for valuable discussions
allowing us to remove the hypothesis that the angle is rational.

Proof Let SO be a CMS as in 1.2, and let S be the CMS obtained by
reflecting SO through L U L2 and then successively reflecting each bounded
surface obtained through each of its line boundaries. Choose the same coordinate
system as in 1.1, where a or; the xl axis parallel to Off, the x2 axis parallel to
L1, and the x axis parallel to the common perpendicular A to t and L..

Let or1, 02 be the isometries of R 3, which are the reflections through L1, L2,

respectively (i.e., 0 is rotation of R about Li by the angle r). Let - 0201; is
an orientation-preserving isometry of S. Consider the orientable surface S/z.
The metric on S is invariant by ; therefore, acquires a complete metric.
The total curvature of is 2c(S0), hence is finite. Since S is topologically a

twice-punctured sphere (SO u Ol(So) is a fundamental domain for the action of
z), it follows from Huber’s theorem that is conformally C* (0}. Hence
S is conformally C.

For x S0, the normal vector to S at 01(x ) is the image of the normal vector
to S at x by inversion in the great circle of 2 orthogonal to L1; here we identify
a normal vector to S with its parallel translate to the origin. Hence, the normal
vector to S at (x) is the image of the normal vector to S at x by a rotation of

2 about the axis A (which we take as the x axis) by twice the angle between L
and L2. Notice that SO has no normal vector parallel to e (0, 0,1). On int So
this follows from our graph hypothesis, and on L U L2 it follows from the
boundary maximum principle. Since r leaves the direction of e invariant, it
follows that the normal field to S is never parallel to e3.

We identify C with 2 { e3 } by stereographic projection from e3. Then the
Gauss map g on S takes its values in *. Let : S be a lifting of g to the
covering space C of C* via e z, i.e., g(x) exp((x)). Since rotation about 0 in
C lifts to translation in C, we have ,((x)) ,(x) + ai for x S and some real
number a. We know S is conformally and L1, L2 correspond to parallel
straight lines in with z a translation. So we can conformally parametrize S by
C so that (z)=z+aiforallzC.
Now, g(z + ai) g(z) + ai for z C, and the image by of the band E in

C bounded by L1, L2 is contained in a horizontal band of height r (the graph

FIGURE 3
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hypothesis). For z C, let n be an integer satisfying z nai E. Then g(z), ( z nai ) + nai and , ( z ) z , z nai ) z nai ). Hence the imaginary
part of g(z) z is bounded on C, so g(z) z is constant and g(z) ce for
some constant c. After a conformal reparametrization, we can suppose g(z) e.

It remains to find the w of the Weierstrass representation. The coordinate x is
a harmonic function on C (= S) with no critical point, and the graph hypothesis
implies that the level sets { x constant} are connected. Let x’ be a harmonic
conjugate of x3. Then the restrictions of x’ to the level sets of x have no critical
points, and it follows that rl x + ix is a global conformal parameter on C.
Hence we can take rl(z) az for some a C, and g(rt) e n.
Now x3(rt ) Re fgw Re(- fidrt), so fgo and fid differ by a

constant and gw -idl. Thus w -ie- dl and S is a helicoid.

Examples. Let P(z) be a complex polynomial with real coefficients, and
consider the pair (g, 0):

g(z) p(e),
o P(e).

It is not hard to check that for Im(z) [0,2r],(g, w) parametrizes a simply
connected CMS with boundary two parallel long lines L1, L2. Also, the total
curvature is finite and one varies the total curvature with the degree of P. Also,
one varies the angle between L1, L2 by multiplying the data by a constant.
Hence, the graph hypothesis is necessary in Theorem 1.1.

II. Scherk’s surface. Scherk’s surface M is a CMS in R that is doubly
periodic; it is invariant by translations parallel to the x and x2 axes. The surface
projects onto the (x, x2) plane, onto the black squares of a checkerboard
pattern, and it is a graph over the interior of each black square (Figure 4). M
contains the vertical lines passing through the vertices of the squares; a part of M
over the interior of a square with the four vertices is a CMS bounded by the four
vertical lines through the vertices. The quotient 3r of M by the group G (-- Z2)
of translations that leave it invariant is an embedded CMS in 1I3/G, which is
conformally a four-punctured sphere and of total curvature 4r. A fundamental
domain for G is two black squares meeting at a vertex. A Weierstrass representa-
tion of 3r is

g(Z) Z, (Z) Z4 1’
X R (0).

The punctures are the four roots of unity; the limiting values of the Gauss map g
at the four ends of
We remark that Scherk’s surface also exists over a rhombus tesselation of the

plane.
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FGURE 4

THEOREM 11.2. Let SO be a CMS whose interior is a graph over a parallelogram
P in the (x1, xE) plane and whose boundary is the four vertical lines over the
vertices of P. Then P is a rhombus and SO is Scherk’s surface. A Weierstrass
representation is

(z eiO)(z e-iO)(z + eiO)(z + e-iO)
, R- (0).

Proof Let S be the CMS on R obtained by successively reflecting SO across
its lines boundary. S projects onto the checkerboard pattern of the plane defined
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by P and contains the vertical lines over the vertices. Let G be the group of
horizontal translations with fundamental domain two parallelograms P, P’ meet-
ing at one vertex. Let be the CMS S/G in N 3/G. Notice that S is a graph over
(int P) u (int P’), and if the normal vector to S on int P points into the northern
hemisphere of S 2, then the normal points into the southern hemisphere on int P’.
Hence, S is an orientable surface and is topologically S 2 less four points.
The points of S with a horizontal normal vector are precisel the lines over the

vertices of the checkerboard. Let g denote the Gauss map of S. Exactly as in the
proof of 1.1, we see that g is injective on each of the four vertical lines of . Thus
the equator of S 2 is finitely covered by g" $2; hence, is conformally a
four-punctured sphere, each puncture is a removable singularity of g, and the
total curvature_of S is finite. So g extends to a meromorphicrnap (we also call g)
on the sphere S, obtained by adding the four punctures to S.

Let C be the Jordan curve on S composed of the four_ vertical lines over the
vertices of P, together with the four vertices. C separates S into two disks El, E2,
and if gE is contained in the northern hemisphere, then gE: is contained in the
southern hemisphere (E is the part over int P and E: is the part over int P’).
Hence, the degree of g: S: is the degree of g/U: U C, where C is the
equator of S 2. We claim this degree is 1. On a vertical line L, g is injective, and
the most the normal can turn as one traverses L is the angle P makes at the
vertex L c3 P. Since g: ff S: is surjective and g-l(c)= t, it follows that
g: C ---, C is a bijection. Hence, the degree of g is 1 and the values of g at the
punctures are + e +/- 0 (after a rotation of P).

So we can parametrize S by its Gauss map, i.e., we take g(z)= z, and the
punctures are + e -+ i0. Then the form o of the Weierstrass representation of has
no zeros in C and m is a regular point of S; hence, m is a zero of o order 2 (it’s
a simple pole of g). The poles of are at the four punctures. Hence,

cdz

(z ei)"l(z e-i)":(z eiO)n3(z "-t- e-iO) n4

for some c C and integers n, > 1.
Since is a zero of order 2 of , we have E=lnk 4; hence, rt k ] for

k 1,2,3,4.
Now we shall see that P must be a rhombus. The coordinate function x is

well defined on , since G leaves x invariant. Hence, Ref,g 0 for every
closed loop on . Calculating this integral for simple loops about three of the
punctures shows that c is pure imaginary.

Writing c i, real, we obtain

sin/7 -cos 0
Refvql= sin20 "hr’ Refvq2 sin20 "r’
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where 3’1 is a simple loop about ei. Also,

rR cos 20
Re

2 sin20’
Re

2 sin20

where 3’2 is a simple loop about e-i. This implies that the four sides of P are of
length IrX/2 sin20 l, which completes the proof of 2.1.

III. Intersecting line boundaries. In this section we will consider CMS’s with
boundary polygonal arcs composed of long and short lines.

Let L1, L2 be infinite rays issuing from the origin in the Xl, x2 plane P. Let A
be one of the sectors in P bounded by L U L2.

THEOREM III.1. Let M be a minimal surface with boundary L L2 and int M
a graph over A. Then M A (M is a plane).

Proof Let M be the minimal surface obtained by successive reflections of M
through L1 L2 L CI Z2. Let (g, to) be a Weierstrass representation of M.
We orient M so that the normal to M points into the southern hemisphere.

Then this is true on M, since the reflections of M are also graphs over sectors in
P (the normal may be horizontal at points__of L O L2). Hence g: M C is
bounded, and to is a__holomorphic form on M with no zeros.

Define a map F: M --, C by F(z) if)to, where the integral is taken over any
path on M from 0 to z. It follows from the work of Beeson [1] that to is analytic
in the corner, which allows us to integrate to on a path starting at 0. It is not hard
to see that this is independent of the path chosen. We claim F only takes the
value 0 at 0. For suppose F(w) O, w 4: O. We have F’(w) 4: 0; hence we can
find a local conformal inverse G of F with G(0) w. Let R > 0 be the largest R
for which G can be defined on DR(0) If R= o, the goG is a bounded
holomorphic map on C; hence, g is constant and M is a plane. If R < o, let p
be a point of 0DR(0), where G cannot be extended to a neighborhood of p. Let
L { tp/O < < 1} and 3’ G(L). Then 3’ has finite length, since the metric on
M is ds Il(1 + Igl2/2), [gl is bounded, and

fvl01 Lllf(a(tp)) [a’(tp) IPl dt R.

Clearly, if 3’ converged to a point of M, say Zl, then F(zl) =p and F’(z) 4 0,
so G could be extended to a neighborhood of p. So 3’ must converge to 0. But
then F(0) =p and p 0, so this is impossible. Hence F(M) c C O.

Let p: C C 0 be the exponential map, and let F0: M C be a rifting of
F. Choose z0 M with Fo(zo) 0. Let G be a local inverse of F defined in a
neighborhood of 0 with G(0) z0. Let R > 0 be the largest number such that G
can be defined on DR(0) to be an inverse of F0. Exactly as before, one proves
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R oo. Hence g G is a bounded holomorphic map on C and M is a plane.
(The idea in this proof has already been used by Osserman [4].)

Next we consider a connected boundary composed of two long lines and one
short line. Let L ((0, t, O)/t > 0), L2 ((0, O, )/O < < 1), L
((0, t, 1)/t < 0), and A {(Xl, x2, 0)/X >- 0).
THEOREM 111.2. Let M be a minimal surface with boundary L U L2 k3 L3, and

suppose int M is a graph over A. Then M is part of a helicoid.

Proof Consider the Gauss map g of M. Along L2, g is injective (since int M
is a graph over A) and takes its values in the equator. There are no other points
of M with a horizontal normal vector. This is obvious for points of int M.
Suppose x L1 L has a horizontal normal vector. Consider the vertical plane
P through x containing L. M is entirely on one side of P (by the graph
hypothesis) and M is tangent to P at x, so by the boundary maximum principle
.for minimal surfaces, we have M P, a contradiction.
Now let M be the minimal surface obtained by re_flecti_ng M through L2. M is

an embedded CMS with boundary two long lines L1, L (that contain L, L3,
respectively__). As in the proof of 1.1, we see that M has finite total curvature"
quotient M by the translation taking L to L3. The orientable two-sheeted cover
of this surface is conformally a two-punctured sphere (its Gauss map covers a set
of positive capacity at most twice) and is of finite total curvature. Now the
conclusion of III.2 results from the following theorem of E. Toubiana (to
appear).

THEOREM 111.3. Let M be an embedded CMS in R with boundary two parallel
long lines. If the total curvature ofM is finite, then M is part of a helicoid.

Remarks. (1) Consider the polygon L obtained from L10 L2 L) Z by
rotating L by an angle a in its horizontal plane and leaving L, L2 fixed. Let A
be a sector in the (x, x2) plane bounded by L1 and the projection of (the
rotated) L3. An interesting problem is to determine whether the helicoid is the
only minimal surface with boundary L and interior a graph over A. For
our techniques imply that M is of finite total curvature. However, this does not
appear sufficiently conclusive, for the reflection of M through L2 may not be
embedded, so we cannot apply Toubiana’s theorem.

(2) Let P be a parallelogram in the (X1, X2) plane with sides A, B, A2, B2,
and suppose IAI / IA2I < IBxl / IB2[. Jenkins and Serrin have proved that
there exists a unique minimal surface that is a graph over P with asymptotic
values + o on Ax, A2, and arbitrary continuous data on B, B2 [2]. Taking the
data zero on B1, B2, we obtain a minimal surface with boundary L equal to
B t..) B2 together with the four vertical half lines issuing from the four points
3B U B2. Now let M be any CMS with boundary L and int M a graph over P.
It seems likely that M is the Jenkins-Serrin solution. As in 1.1, we can prove that
M is of finite total curvature. Reflecting M through each of the lines in L and
quotienting by two horizontal translations, we obtain a two-punctured torus. One
should be able to analyze the Weierstrass data of this surface.
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(3) Suppose M0 is bounded by parallel straight lines (Lg }. Consider NO Mo
td OkMo, o, the symmetry of about Lk. Let N be the manifold obtained from
NO by identifying L with Oek(L). Since ,g o is an orientation-preserving
isometry of No, the metric on NO passes to a metric on N. Also, the (g, to) of the
Weierstrass representation of M are invariant by , hence pass to N.
The total curvature of N is twice that of M0. We know N is of finite conformal

type (in particular, N is of finite topological type) if c(N) is finite. It follows that
c(Mo) is infinite if the number of lines in 3M0 is infinite.

Osserman’s theory on values of the Gauss map applies to N. In particular, if
c(N) c, then g takes every value infinitely often, except perhaps for a set of
zero capacity.
Now consider a convex polygon P and a Jenkins-Serrin minimal surface Mo

over P; 3Mo consists of the vertical lines over the vertices of P, and the previous
discussion applies. However, we know that g is injective on each line Lg and that
the only points on Mo with a vertical tangent plane are on 3Mo. Hence,
c(Mo) < c, since the capacity of the unit circle is positive.

Clearly, c(M0) is an integral multiple of 2r. In fact, c(Mo) can be calculated
by remarking that the normal vector on L turns exactly by the angle at the
vertex of P defining L as one traverses L from bottom to top (-c to +
N is conformally a punctured sphere, and the degree of g on the conformal

compactification of N is equal to the degree of g on the compactification of 3Mo
(since g on M0 points into one hemisphere and on oMo points into the other).
Hence the degree of g is 1/2(n- 2) and c(Mo)= (n- 2),r, where n is the
number of vertices of P.
We remark that the preceding discussion applies when OM0 also contains

planar geodesic curves: M0 extends across the plane of the curve by reflection
through the plane.

Added in proof" R. Krust and P. Collin have removed the hypothesis of finite
total curvature in 1.2.
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