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MOST AUTOMORPHISMS OF A HYPERBOLIC GROUP
HAVE VERY SIMPLE DYNAMICS

By GILBERT LEVITT AND MARTIN LUSTIG

ABSTRACT. — LetG be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank).
We show that, for “most” automorphismsof G (in a precise sense), there exist distinct eleméfits X ~
in the Gromov boundary)G of G such thatlim,, ... a®"(g) = X* for every g € G which is not
periodic undexx. This follows from the fact that the homeomorphigia induced oG has North—South
(loxodromic) dynamics 2000 Editions scientifiques et médicales Elsevier SAS

RESUME. — SoitG un groupe hyperbolique non élémentaire (par exemple un groupe libre non abélien de
rang fini). Nous montrons que, pour “la plupart” des automorphismés G (en un sens bien précis), il
existe deux éléments distinc™, X~ dans le bord de Gromo®G de G tels quelim,, . oo o™ (g) =
X* pour toutg € G non périodique sous I'action de. Ceci résulte du fait que 'homéomorphisrie
induit surdG a une dynamique Nord—Sud (loxodromique).2000 Editions scientifiques et médicales
Elsevier SAS

0. Introduction and statement of results

Let o be an automorphism of a (word) hyperbolic grodpFixing g € GG, we consider the
sequence of iterates’ (g), forn > 1. We assume thatis nota-periodic, so that" (g) goes off
to infinity in G.

We will show that, for “most” automorphisms of GG (in a sense that will be made precise),
there exists a poink * in the Gromov boundar§G such that"(g) converges toX * for every
nonperiodicg. If G is free on a finite se#, this says that there exists a sequence of letters
akj[1 € AU A~1 such that, for any non-periodig the kth letter ofa™(g) equaISa,ch1 for n large.

This dynamical behavior is best expressed in terms of the homeomorphisnduced bya
on 0G: for mosta € AutG, the mapda has North—South dynamics in the following sense. We
say thatoa, or «, hasNorth—South dynamig&lso called loxodromic dynamics) ifa has two
distinct fixed pointsX *, X —, andlim,, ., .. da*™(X) = X* uniformly on compact subsets of
OG\ {XT}.

This implies (see Proposition 2.3) thidite set ofa-periodic elementg € G is a virtually
cyclic subgroug(possibly finitg, andlim,, ., | . a*"(g) = X* if g € G is nota-periodic For
an arbitrary automorphism, it is proved in [15] thét(g) limits onto a finite subset ddG (that
may depend op).

If for instancex is conjugation,,, by m € G, thenda is simply left-translation byn, andoa
has North—South dynamics for atl outside of a finite set of conjugacy classes (those consisting
of torsion elements), see [5,11,12].

ANNALES SCIENTIFIQUES DE LUECOLE NORMALE SUPERIEURE- 0012-9593/00/041 2000 Editions scientifiques et
médicales Elsevier SAS. All rights reserved



508 G. LEVITT AND M. LUSTIG

In general, we consider an outer automorphigra Out GG, viewed as a collection of ordinary

automorphismsa € AutG. For a topological motivation, induce by a continuous magp: X —

X with m X ~ GG. Automorphismsy € ¢ correspond to lifts off to the universal covering of

X. Different lifts may have very different properties. On the other hand, conjugate maps have
similar dynamical properties. This led Nielsen [18] to define liftsfdb be isogredient if they

are conjugate by a covering transformation.

Going back to group automorphisms, we therefore defing € ¢ to be isogredientif
B=1i,0ao0 i;l for someh € G, with i,(g) = hgh™! (the word “similar” was used in [9]).

We denoteS(®) the set of isogredience classes of automorphisms represehtifigh = 1,
then S(®) may be identified to the set of conjugacy classes7aodulo its center. We say
thats € S(®) has North—South dynamics if automorphisms s have North—South dynamics
onoG.

THEOREM 0.1. —LetG be a hyperbolic group, an@ € Out GG. ASSume= is non-elementary
(i.e. G is not virtually cyclig.

(1) All but finitely manys € S(®) have North—South dynamics.

(2) The setS(®) of isogredience classes is infinite.

Example0.2. — When ¢ is induced by a pseudo-Anosov homeomorphignof a closed
surface X, the “exceptional” automorphisms € ¢ (those that do not have North—South
dynamics) correspond to lifts @b having a fixed point in the universal covering &f. The
set of exceptional classes &( @) is in one-to-one correspondence with the set of fixed points
of . It may be empty, see [8] for an explicit example. On the other hand, the number of fixed
points of* goes to infinity withk. Thus the number of exceptional isogredience classes cannot
be bounded in terms @¥ only.

This example suggests the possibility of using exceptional isogredience classes to develop
a fixed point theory for general outer automorphisms of free groups. Exceptional isogredience
classes would be the algebraic analogue of Nielsen classes of fixed points, and there should be a
(rational) zeta function obtained as a sum over exceptional classes of powe(sahpare [7]).

Example0.3. — Suppose&~ is free. It follows from [3, Lemma 5.1] that some power of
¢ contains an exceptional isogredience class. It may be shown using [4] and [14] that the
isogredience class af is the only exceptional class whenis the irreducible automorphism
a+— abe, b bab, ¢ — cabe studied in [13].

The proof of the first assertion of Theorem 0.1 wii¢is not free requires the following fact,
which is of independent interest:

PrRopPOSITION 0.4 (Quasiisometries of hyperbolic spaces have a quasi-fixed point or a quasi-
axis). —Let f be a(\, C)-quasiisometry of @-hyperbolic proper geodesic metric spade, d)
to itself. There existd/ = M (6, A, C), independent oF' and f, with the following propertyif
d(f(z),z) > M for all z € E, then there exists a bi-infinite geodesisuch that the Hausdorff
distance betweefy and f () is finite.

IncreasingM if necessary, we conclude (Corollary 1.4) that the actiofi oh 9 E has North—
South dynamics, with fixed points the two endpoints of

1. Quasiisometries of hyperbolic spaces

We start by proving Proposition 0.4. The proof may be seen as a generalization of the
well-known argument constructing the axis of an isometry of Ririree having no fixed
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AUTOMORPHISMS OF A HYPERBOLIC GROUP 509

points (see [17]). We refer the reader to [5,11,12,23] for basic facts about hyperbolic spaces,
guasiisometries, and hyperbolic groups.

Let (E,d) be a propeb-hyperbolic geodesic metric space. Properness is assumed mostly for
convenience, in particular could be arR-tree in what follows.

Forx,y € E, we denotdz, y] any geodesic segment fromto y. Given a pointz, any point
p € [z, y] that isé-close to both segments, z] and |y, z] will be called a projection of onto
[x,y] (two projections are only a few's apart).

Recall thatf: E — E'is a(\, C)-quasiisometry if

1
F(r.y) = C<d(f(2), f(v) < M(a,y) +C
for all z,y € E, and there existg satisfying the same inequalities such tlfiatg andg o f are
C'-close to the identity. We let(f) = inf,cp d(f(x),x) be the minimum displacement gf
Note that/(g) < M(f) + 2C.

The following lemma is left as an exercise.

LEMMA 1.1.-If fis a (), C)-quasiisometry of a compact interval to itself, thrf) < C.

From now on, we fix5, A, C'. The quantitiesC;, M7, Cs introduced below depend only on
these three numbers, not @1 f, or the points under consideration. We also say that two points
x,y are close, or have bounded distance, if their distance may be bounded a priori by some
number depending only ah A, C.

The quasiisometryf has the following basic property: there exigts such that, for any
geodesic segmeft, y], the image ofx, y] is contained in th€’; -neighborhood of f (), f(v)].

Consider a geodesic triangtef(a), f2(a). Letu be a projection of onto[f(a), £*(a)], and
v a projection off (u) onto[f(a), £*(a)].

LEMMA 1.2.-There exists\/; such that, if!(f) > M, thenv € [u, f%(a)].

Proof. —Suppose € [f(a),u]. Sincef (v) is close tof2(a), f(u)] and f(u) is close tov, the
point f2(u) is close to[f?(a), f(u)]. Thus, up to a bounded error, the pointand f2(u) both
lie on the segmentf(a), f(u)]. It follows that f or g is close to a map sendirg, f(u)] into
itself. Lemma 1.1 implies that some pointfef f(u)] is close to its image by. O

We assume from now on thégf) > M.

LEMMA 1.3.-There existg’s with the following propertyfor anya € F, there exist three
pointsp, ¢, r, lying in this order onfa, f2(a)], such that

(1) g is Cy-close to a projection of (a) onto|a, f%(a)];

(2) pis Cy-close tog(q);

(3) ris Cy-close tof(q).

Proof. —With the same notations as above, it follows from Lemma 1.2 that close to
[f(a), f(u)]. Thereforey(u) is close to[a, u]. We also know thaf (u) is close to[u, f2(a)]. Let
p,q,r be projections ontda, f2(a)] of g(u),u, f(u) respectively. Either they are in the correct
ordera, p, q,r, f2(a), or this may be achieved by moving them by a bounded amoumnt.

Note thatf(q) is close to[f(p), f(r)], hence tdq, f(q)].

We now complete the proof of Proposition 0.4. View Lemma 1.3 as a way of assigning a point
¢ to any pointa. We construct a sequengg by iterating this process, witf, the point assigned
by Lemma 1.3 to an arbitrary starting point E. Sincef(q,) is close td[g,,, f*(g»)], the point
qn+1 is close tof (¢,).
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510 G. LEVITT AND M. LUSTIG

Note that by construction,,+1 € [gn, f?(gn)], While g2 is close tof(g,+1), hence to
[qn, f*(gn)] by assertion (3) of Lemma 1.3. Thus the broken geodesics- (¢, ¢nt1] U
[¢n-+1, gn+2] @re uniformly quasigeodesic. Also note that by assertion (2) of Lemma 1.3 we have

d(Gn, gn+1) = d(9(gn+1); gnr1) — Ca = £(g) — Co,

showing that the overlap betweep and~,, 1 is bounded below by a linear function &(f).

It follows from [5, Théoréme 3.1.4] or [11, Théoréme 5.25] that the sequgnisean infinite
quasigeodesig™ if ¢(f) is large enough. Sincé( f(¢.), gn+1) is bounded, the point at infinity
of v is fixed bydf (the homeomorphism induced kyon OE). The quasigeodesic may be
extended in the other direction by applying the same constructign yeelding a bi-infinite
guasigeodesic, hence a second fixed poindffurThis proves Proposition 0.4.

COROLLARY 1.4.-Letf be a(), C)-quasiisometry of &-hyperbolic proper geodesic metric
space(F, d) to itself. There exist& = N (4, A\, C), independent off and f, with the following
property. if d(f(x),x) > N for all z € E, thendf has North—South dynamics.

Proof. —Supposé(f) > M. Let~ be a bi-infinite geodesic joining two fixed pointg), X of
df.ConsiderX # Xy, X, in OF. Let be a projection of{ onto~. A projectiond’ of 9 f(X) is
closetof (9). If £(f) is large enough, the distance frahto ¢’ is bounded below and the oriented
segmen®d’ always points towards the same endpaoiitof -, independently of the choice of
X. Applying this argument to botfi andg, we deduce tha® f has North—South dynamicso

2. North—South dynamics

We first prove:

THEOREM 2.1.—-Let ¢ € OutG, with G hyperbolic. All but finitely many isogredience
classes € S(9) have North—South dynamics ox.

Proof. —Let E be the Cayley graph @ with respect to some finite generating getwith the
natural left-action of7. We identify the set of vertices df with G, andoE with 0G. We fix a
“basepoint’a € @, and we represent it by a quasiisomefryE — E sending a vertey to the
vertexa(g), equivariant in the sense thath).J = Jh for everyh € G.

Giveng € &, we write § = i,,, o « and we consider the mafy = mJ (this involves a choice
for m if the center ofGG is not trivial). Note that it maps a vertex onto ma(g) (not onto
B(g) = ma(g)m™).

The map.Js satisfies3(g).Js = Jgg, it inducesds on OE (because a right-translation 6f
induces the identity on the boundary), and the mépsire uniformly quasiisometric (because
they differ by left-translations).

If two mapsJgs, J,, with 3,y € @, coincide at some point of, then clearlys = ~. More
generally:

LEMMA 2.2.—Letg,v € . If there existy, h € G with
97" Js(g) =", (h),

thens and~y are isogredient.
Proof. —Writing 8 = 4,, o « andy = i,, o a we get

g 'ma(g) = h 'na(h)
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which we rewrite as
nm = hgflma(gffl)rrf1 = hgflb’(gh*l),

showing thaty = i,,,,,-1 0 8 =ij,-1 0 3o (i,-1) " is isogredientted. O

By Corollary 1.4, there exists a numbar (independent off) such that, if/3 moves every
point of £ more thanN, then 93 has North—South dynamics. Sinde is a locally finite
graph, Lemma 2.2 implies that this condition is fulfilled for glice ¢ outside of a finite set
of isogredience classes. This completes the proof of Theorem 211.

Remark— WhenG is a free groupF,, there is (using the notations of [4]) a one-to-one
correspondence betwee{ #) and the set of connected components of the graph), for
p € @. In this case one may use Lemma 5.1 of [4] instead of Proposition 0.4 in the above proof.
Also note that, as a corollary of Theorem 4 of [9], the nigp has at mostt fixed points for
(3 € @ outside of at mostn — 4 isogredience classes. Another rema$k®) is infinite when
¢ € Out F,, fixes a nontrivial conjugacy class, by Proposition 5.4 of [4].

PROPOSITION 2.3. —Suppos@éa has North—South dynamics, with attracting fixed padint
and repelling fixed poinK —. Then
(1) The subgroup?(«) C G consisting of allv-periodic elements is either finite or virtually
Z with limit set{ X ™, X~ }.
(2) If g € G is nota-periodic, thenlim,, o, a™"(g) = X+,

Proof. —Given g € G of infinite order, we denotg™> = lim,, ,, o, ¢g™". These are distinct
points of G. Note thatda(g™>) = a(g)™>. The subgroup ofG consisting of elements
whose action oG leaves{g>, ¢~} invariant is the maximal virtually cyclic subgroug,
containingg. If h ¢ N, then{g>, g~} is disjoint from its image by.. If 0a(g>) = ¢, then
Ny is a-invariant (i.e.a(Ny) = Ny).

Suppose (1) is false. Then there exist mperiodic elements, i of infinite order generating
a non-elementary group. The point$> and h*> are four distinct periodic points ao, a
contradiction.

To prove (2), first supposé is virtually cyclic. ThenG maps ontdZ or Z /2Z x Z /2Z with
finite kernel (see [21]). From this one deduces that the periodic subgPdup has index at
most 2 and contains all elements of infinite order (an instructive example is conjugationrby
{a,b| a®> = b? = 1)). Both ends of are fixed byda; all non-periodic torsion elements (if any)
converge towards one end under iteratiomvpfowards the other end under iterationcof! .

Now consider the general case. It suffices to shiow, ., a™(g) = XT. SinceX* is a
fixed point of0«a, we are free to replace by a power if needed. We first note that there exists a
numberC' such that

1
(9,9) = sl =C

for everyg of infinite order (wherg , ) denotes Gromov'’s scalar product based at the identity
in the Cayley graph, and is word length). This follows easily from Lemma 3.5 of [20] (ifis
free andA is a basis(C' = —1/2 clearly works).

Supposey is nota-periodic. Therim,, . |a™(g)| = co. If furthermoreg has infinite order,
applying the previous inequality " (g) yields

. n T n oo . n(. o0\ _ y+
Jim a”(g)= 1Tim (a"(g)) " = lim da"(g>) =X

(note thaty> = X —, since otherwiséV(g) would bea-invariant andy would be periodic).
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512 G. LEVITT AND M. LUSTIG

Now we consider a non-periodic elemeny of finite order. We distinguish two cases. Suppose
first that{ X ™, X~} is the limit set of an infinitex-invariant virtually cyclic subgroug?. We
may assume that is maximal (it then contains all periodic elements)y ¥ H, choose: € H
of infinite order, withh*> = X+, Replacingy by a power, we may assuméh) = h. We have
gh™ # h~°°, and thereforgy, = h*gh* has infinite order fork large enough. Since”(g;)
converges toX + asn — +oo, we find thatn™ (¢g) convergesta X+ = X+, as desired. There
remains to rule out the possibility that non-periodic torsion elemgmrts{ converge towards
X~ under iteration ofv. If this happens, chooge¢ H. Sincej andg;j are nota-periodic (they
don’t belong toH'), we know thatv™(j) anda™(g7) are close toX ™ for n large. Buta™(g) and
a"(g~1) are close toX . This is impossible.

If {X* X~} is not as above, theX ™ (respectivelyX ~) is an attracting (respectively
repelling) fixed point for the action ok U da on the compact spadg U 0G (see [14]). The
desired resultim,,_, . o, a"(g) = X follows from an elementary dynamical argument. Indeed,
the sequence™(g), with n > 0, has some limit poinX € 0G. We haveX # X~ becauseX ~
is repelling onG U dG, and thereforéa™(X) converges taX ™. We then deduce that * is
a limit point of a"(g), and finally thata™(g) converges taX ™ becauseX* is attracting on
GUOG. O

3. Isogredience classes

The main result of this section is the infinitenessSe®) (but see also Proposition 3.7). We
first study four different situations where we can reach this conclusion. For now, we only assume
thatG is any finitely generated group. We fix€ Out G anda € .

e By definition, the automorphism$=i,, c « and~ = i,, o « are isogredient if and only if
there existy € G with v =i, o o i, !, or equivalentlyn = gma(g~")c with ¢ in the center
of G. Though we will not use it, we note th&t @) is infinite if the center of7 is finite and the
action of » on H;(G;R) hasl1 as an eigenvalue.

Now assume tha® preserves somB-tree (see [6], [17], [22] for basics aboRE-trees). This
means that there is dR-treeT" equipped with an isometric action 6f whose length function
satisfied o & = A\ for some) > 1. We always assume that the action is minimal and irreducible
(no global fixed point, no invariant line, no invariant end). We gay GG is hyperbolic if it is
hyperbolic as an isometry @f. We shall use the following fact due to Paulin [19]: any segment
[a,b] C T is contained in the axis of some hyperbalie G.

Becausdo ¢ = \/, it follows from [6] (see also [9], [16]) that, givem € @, there is a (unique)
mapH = H, : T — T with the following propertiest is a homothety with stretching factar
(.e.d(Hz,Hy) = A\d(z,y)), and it satisfiesv(g)H = Hg for everyg € G. If § =1,, o, then
Hg=mH,.If f=ijoao0 z'g_l is isogredient tay, thenHz = gH, g~ is conjugate taH,,.

e First consider the case when= 1. In this case the translation length of the isoméify is
an isogredience invariant gfand we easily get:

ProOPOSITION 3.1. —Supposéo ¢ = ¢, where/ is the length function of an irreducible action
of G on anR-tree. ThenS( ) is infinite.

Proof. —Fix a € . Using Paulin’s lemma, it is easy to constructc G with the translation
length of mH,, arbitrarily large. The corresponding automorphisipso « are in distinct
isogredience classes

e The case\ > 1 is harder.

PROPOSITION 3.2. —Suppos€ o ¢ = \¢, where X > 1 and / is the length function of an
irreducible action ofG on anR-tree T'. Assume that arc stabilizers are finite, and there exists
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Ny € N such that, for everg) € T, the action oStab @ onmo (T \ {Q}) has at mostV, orbits.
ThenS( @) is infinite.

An arc stabilizer is the pointwise stabilizer of a nondegenerate seglméit and Stab @
denotes the stabilizer @j.

Proof. —Fix a € @ and considerHd = H,. We choose a poinP € T' as follows. It is the
unique fixed point ofH if H has a fixed point iri". OtherwiseH has a unique fixed poir®
in the metric completio” of T, and a unique eigenray (by definition, p is the image of an
isometric embedding: (0, 00) — T such thati p(t) = p(At) forall ¢ > 0, see [9]). We letP be
any point onp. In both cases’ € [H ' P, HP)].

For further reference, we note that the stabilizer of any initial segm@nt) of an eigenray
is the same as the stabilizer of the whole eigenray, becatgen(0,¢) and Stab p(0, \t) =
a(Stab p(0,t)) are finite groups with the same order. Suppose furthermoreHhagas two
eigenraysp, p’, andg € G maps an initial segment of onto an initial segment of’. From
the basic equation(g)H = Hg it follows thatg~'a(g) fixes an initial segment qf, hence all
of p, and we deduce thgtmaps thevholeof p ontoy’.

Returning to the main line of proof, we want to finchw € G generating a free subgroup of
rank2, such that:

(i) vP andwP belong to a componefit™ of 7'\ { P}.

(i) v—'P andw!P belong to another componeht .

(iiiy If HP +# P, thenH*'P c T+,

(iv) If HP =P, thenH (T%)#T".

Note that these conditions foreeandw to be hyperbolic, with axes intersecting in a non-
degenerate segment containifigin its interior. Furthermore, the two axes induce the same
orientation on their intersection.

It is easy to construat, w using Lemma 2.6 of [6] and Paulin’s lemma, except in one “bad”
situation where (iv) cannot be achieved:P = P, andT \ {P} has exactly two components,
which are permuted by .

If H is bad, we have to change our initial choicenof ¢. We use the following observation.
SupposeH;, H, are homotheties with the same dilation factor- 1 and distinct fixed points
Py, Py; if Hy (respectivelyH,) does not send the componentiof { P, } (respectivelyl’\ { P2 })
containing P, (respectivelyP;) into itself, thenH,H; ' is a hyperbolic isometry whose axis
containg Py, Ps].

We choosen € G acting onT" as a hyperbolic isometry with axis not containifg and we
replacex by o =i,,, 0. Let H' = mH = H,,. We claim thatd’ cannot be bad (with respect to
its fixed pointP’). Indeed, this follows from the above observation because the a¥ig Hf !
does not contai®. Thus, whenH is bad, we can find, w satisfying the above conditions with
respect taH’. For simplicity, we keep writing?,  rather thanH’, o'.

Now assume by way of contradiction that there are dilysogredience classes §(®).
Given an integep, consider the sell’ consisting of words in the letters w containing each
letter exactlyp times (we do not use~! or w—'). We fix p such thati?” has more thaf s>V,
elements, whereis the order of the stabilizer of the afe= [P, v P] N [P, wP] andN is defined
in the statement of Proposition 3.2. We will consider the automorphisms, for o € W, and
the corresponding homothetie$! .

Considerr = ...ug, € W, with eachu; equal tov or w. The elements, w were chosen in
such a way that the points

PuirPugug Py ..o uy . ougpPoug o cugp HP = o HP
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all lie in this order on the segmef®, o H P| (with the last two points possibly equal). Sinfe
belongs to the axis of bothandw, we find that, for anyr € W, the length of P, 0 H P] equals

L =pl(v) + pl(w)+d(P,HP)

independently of. We also observe that, if, 7 € W, then[P,oc H P] N [P,7H P] contains the
segment = [P,vP]N[P,wP)].

Furthermore the intersectid, o H P| N [o H P, (o H)? P] consists only ot H P: this follows
from P e [ugplP, Hu,P)if HP = P, from P € [H='P,u; P] if HP # P. This implies that
[P,o H P] is contained in an eigenray, of the homothety H. Let @, denote the fixed point of
o H in the completiorl” (the origin ofp,).

Now we remark thatP, o H P] is the only fundamental domain of lengkhfor the action of
o H on its eigenray,. In particulard(Q,, P) = % is independent of € V.

Suppose for a moment that for every W the maps H has only one eigenray (this happens
in particular ifQ, € T\ T). If i, conjugates, o o andi, o a (with o, 7 € W andc € G), then
c conjugatesr H andr H . Thereforer sendsp,, ontop,, and the fundamental domdiR, o H P
onto [P, 7H P]. Since these segments both contajrwe find ¢ € Stab I. This contradicts the
choice ofp in this special case, since we obt&if|/s distinct isogredience classessii ®).

In general, ifi. conjugates, o « andi, o «,, we can only say that sends), to Q.. Since
[W| > Ks®No, we can find distinct elements 7(1),...,7(s* + 1) in W such that somé,;,
conjugates, o « andi,(;y o o, and some elemen(j) € Stab Q. ;) sends an initial segment of
the[r(j)H]-eigenrayc(j)p, onto an initial segment of ;.

We have pointed out earlier thaf;) sends the whole eigenray;j)p, onto p, ;). Therefore
h(j)e(y) € StabI. Thus there are at least+ 1 values ofj for which the maps-(j)H have a
common eigenray containing This is a contradiction because at moslements of7 can have
the same action oh. This completes the proof of Proposition 3.2

e We also need:

ProPOSITION 3.3. =§( ) is infinite if G is hyperbolic, non-elementary, anél has finite
order inOut G.

Proof. —Let J be the subgroup of Adt consisting of all automorphisms whose image in
Out G is a power of¢. The exact sequendd } — K — J — () — {1}, with K = G/Center
and () finite, shows that/ is hyperbolic, non-elementary. The set of automorphisnas ¢
is a coset of/ mod K. If o, € @ are isogredient, they are conjugate.n The proof of
Proposition 3.3 is therefore concluded by applying the following fact, due to T. Delzant.

LEMMA 3.4.—Let J be a non-elementary hyperbolic group. LEtbe a normal subgroup
with abelian quotient. Every coset 4fmod K contains infinitely many conjugacy classes.

Proof. —Fix u in the cosetC' under consideration. Suppose for a moment that we can find
¢,d € K, generating a free group of rank 2, such thet® # ¢=>° andud> # d—° (recall that
we denotgyt>° = lim,, ;. g™ for g of infinite order). Consider;, = cfuck andy;, = d*ud*.
For k large, the above inequalities imply that these two elements have infinite order, and do not
generate a virtually cyclic group becauzs;éc’o (respectivelyy,fm) is close tact> (respectively
d*>). Fix k, and consider the elements = :cZ“ykf”. They belong to the cosét, because
J/K is abelian, and their stable norm goes to infinity withThereforeC' contains infinitely
many conjugacy classes.

Let us now construct, d as above. Choose b € K generating a free group of rank 2. We

first explain how to get. There is a problem only if.a> = o~ andub> = b~°. In that case
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there exist integers, ¢ with ua?u=' = a7 andub?u~" = b~9. We takec = a”b?, noting that
ucu~! = a"Pb~ 4 is different frome=! = b= 9a .

Once we have, we choose’ € K with (¢, ') free of rank 2, and we obtaihby applying the
preceding argument usingandec’ instead otz andb. The group(c, d) is free of rank 2 because
d is a positive word i’ andec’. O

Remark— As pointed out by Delzant, similar arguments show th@d) is infinite when®
has infinite order but is hyperbolic in the sense of [1] (becalisehyperbolic, see [1]).

We can now prove:

THEOREM 3.5. —For every @ € Out G, with G a non-elementary hyperbolic group, the set
S(9) is infinite.

Proof. —By Proposition 3.3, we may assume thathas infinite order. By Paulin’s theo-
rem [20], it preserves somB-treeT" with a nontrivial minimal small action ofy (recall that
an action ofG is small if all arc stabilizers are virtually cyclic; the action@fon 7" is always
irreducible).

If A =1, we use Proposition 3.1. If > 1, we apply Proposition 3.2. The existence /g§
follows from work of Bestvina and Feighn [2] (alternatively, one coulddbtorsion-free use ad
hoc trees as in [15]). Finiteness of arc stabilizers is stated as the next lemama.

LEMMA 3.6.—Supposéo ¢ = A/, where/ is the length function of a nontrivial small action
of a hyperbolic groug on anR-treeT'. If A > 1, thenT" has finite arc stabilizers.

Proof. —This is proved in [9, Lemma 2.8] whef is free. We sketch the proof of the general
case. We may assume that the action is minimal.cLetT” be an arc with infinite stabilizes.
Let p be the index of5 in the maximal virtually cyclic subgrouf that contains it. Fixx € &,
and denote by the associated homothety 6f

Since there is a finite union of arcs whose union meets every orbit, we can firfd|dage,
disjoint subarcsey, ..., c, of H*(c) such thate; = v;cy for somew; € G. For eachi, the
stabilizer of¢; lies betweem*(S) = Stab H*(c) and a*(S). From Stab¢; = v;Stabcou; !
we geta(S) = v;a* (S)v; ', hencew; € o*(S). This is a contradiction sincg vy, . . ., v, all lie
in different cosets ofi*(S) moduloa®(S). O

If G is afree group,, we also prove:

PROPOSITION 3.7. —There exists a numbér,, such that, for any? € Out F;, and any integer
k > 2, the natural mags () — S(#*) is at mostC,,-to-one.

Proof. —Let «; (1 < i < N) be pairwise non-isogredient automorphisms ¢n having
isogredientkth powers. We want to bound' in terms ofn only. We may assume that is
a fixed automorphism.

Let T be anR-tree with trivial arc stabilizers preserved ldy(see [9, Theorem 2.1]), and;
the homothety associated 4g. The H;’s all have the saméth powerHg. Fori # j, we have
H; = g;;H; for some nontrivialy;; € F,,. Note thatH; and H; cannot coincide on more than
one point sincd’,, acts onl" with trivial arc stabilizers.

First suppose\ > 1. Then Hyz and all mapsH; fix the same point) € T. The stabilizer
Stab @ C F,, is a;-invariant and has rank n by [10] (see [9]).

If StabQ is trivial (in particular ifQ € T'\ T), theng;; = 1 anda; = «;.

If Stab @ has rank> 2, we use induction on since the restrictions of the;’s to Stab ) are
non-isogredient automorphisms representing the same outer automorphism [9, Lemma 5.1].

If Stab(@ is cyclic, generated by some, we note thaty;; is a power ofu and «;(u) is
independent of. If a;(u) = u, then H; commutes withu and H}" = H} implies g;; = 1. If
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a;(u) =u~!, we writeu? = uPa;(u?) "1, showing thaty; is isogredient tax; whenevely;; is
an even power of;.
Now suppose\ = 1. If Hgz has no fixed point, thetV = 1 since allH;'s coincide on the axis
of Hg. Assume therefore thdf s has fixed points. If all map#/; have a common fixed poiid,
we can argue as above. We complete the proof by showing how to reduce to this situation.
Let (); be a fixed point of{;, ande; some edge containing; and fixed byH z. The action of
F,, on pairs(Q;, e;) has at mosén — 6 orbits (twice the number of edges of the quotient graph
T/F,). After possibly dividingN by 6n — 6 we may assume there is only one orbit. Note that
the action oril" of the element;; € F,, sending(Q;, e;) to (Q;,e;) commutes withHz since
e; ande; are both fixed byH 3. This implies that3 fixes ¢;;, and we can change; within its
isogredience class so as to make all poiptthe same, while retaining the propedty = 3. O
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