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Abstract. Rips' theorem about free actions on R-trees relies on a careful analysis of finite
systems of partial isometries of M. We associate a free action on an R-tree to any finite
system of isometries without reflection. Any free action may be approximated (strongly
in the sense of Gillet-Shalen) by actions arising in this way. Proofs involve the use, in
an essential way, of separation properties of systems of isometries. We also interpret
these finite systems of isometries as generating sets of pseudogroups of partial isometries
between closed intervals of R.

0. Introduction
The theory of one-dimensional dynamical systems involves the study of the iterations
of selfmap(s) of a subset of the line. We are interested in the isometric case with some
finiteness assumptions. More precisely we consider systems of isometries X — (D, {<£;}),
where D is the disjoint union of a finite number of compact intervals, and {(/>,} is a finite
set of partial isometries between closed intervals in D. Using closed intervals, instead of
the more usual open ones, causes some difficulties (for instance for separation properties),
but it is more convenient for certain applications.

These systems arise for instance from transversely measured codimension 1 foliations
on compact manifolds, by taking transversals and first return maps (see for instance
[Hael, Hae2]). As shown by Rips, who named them Makanin Combinatorial Objects,
they also arise in the study of actions of finitely generated groups G on R-trees T (see
[GLP1] and §4). Given a finite subtree K of T, one gets a system of isometries X(K) by
taking the restrictions to K of generators of G, and splitting K open at branch points to
turn it into a union of intervals. Recall that an R-tree is an arcwise connected metric space
in which every arc is isometric to an interval of R. See for instance [Shal, Sha2, Mori]
for historical remarks, references and motivations on R-trees.

f Previous address: Laboratoire de Topologie et Geometrie CNRS URA 1408, Universite Toulouse III, 118
route de Narbonne, 31062 Toulouse Cedex, France.
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There is a group G(X) naturally associated with X. When D is connected, it has
the following presentation (see [Levl]): the generators are in one-to-one correspondence
with the <pj's, and the relations correspond to words in the </>;'s and their inverses having
a fixed point in D.

In [GLP1] we gave a proof of Rips's result that G(X) is a free product of free abelian
groups and surface groups. This is the key step in proving that a finitely generated group
G acting freely on an H-tree T is such a free product; if the finite subtree K c T is big
enough, then G(X(K)) is isomorphic to G.

In this article we show how to associate a free action of G(X) on an R-tree T(X)
with any system of isometries without reflection (see §3). This applies in particular to
systems X{K) obtained as above from a free action on an R-tree T. In this case we
show that the trees T(X(K)) are strong approximations of the original tree T when K
is big (see §4).

The tree T(X) may be viewed geometrically as follows. There is a compact foliated
2-complex E(Z) (see §1) canonically associated with X; it is obtained by attaching
strips to D, one for each </>,. The group G(X) is obtained from 7i\T,(X) by killing all
loops contained in leaves. Let ~E(X) be the covering of E(X) with transformation group
G(X).

The group G(X) acts freely on the space of leaves of the foliation induced on E(X).
This space has a natural pseudo-metric d (coming from length on D) and the associated
metric space T(X) is an R-tree (see [Lev3, Corollary III.5]). But d may be quite far
from being a metric (it may even be identically 0), so that the natural isometric action
of G(X) on T(X) is not always free (from the point of view of [Lev3], this means that
£(X) is not the right covering space to consider!).

We thus have to impose some condition on X to rule out such pathologies. Say that
X is without reflection if no partial isometry obtained by composing the generators <pj
and their inverses carries an interval [x — u, x] (u > 0) onto [x, x + u] in an orientation-
reversing way.

THEOREM 3.2. If X is a system without reflection, then d is a metric and the natural
action ofG(X) on the R-tree T(X) is free.

Now suppose G is a finitely generated group acting freely and minimally on an R-
tree T. Let Kn be an increasing sequence of finite subtrees, with T = [jKn. Then
G(X{Kn)) is isomorphic to G for n big enough (see [GLP1]), and it is easy to see that
the systems X(Kn) have no reflection. We thus get a sequence of R-trees T(X(Kn)),
each equipped with a free action of G.

THEOREM 4.3. The sequence T(X(Kn)) converges towards T strongly (in the sense of
[GS]), hence also in the equivariant Gromov topology (in the sense of [Pau2]j.

The key point in Theorem 3.2 is that d is a metric (i.e. the space of leaves on
is Hausdorff). This is proved using a fact about systems of isometries established in §2,
generalizing Lemma VIII. 1 of [Lev2].

Given X, say that two points x,y in D are in the same X-orbit if there is a word in
the (pj's and their inverses defined at x with image y (we call such a word an X-word).
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THEOREM 2.3. Let X be a system of isometries. Suppose p, q are isometric embeddings
[0, r)] -*• R with T] > 0 such that q, = q(t) and p, = p{t) are in the same X-orbit for
all but countably many t's. Then qt and p, are in fact in the same X-orbitfor every t.
Furthermore there exist finitely many X-words w\, . . . , a>n such that for every t e [0, rf\
there is an i e { 1 , . . . , n] with C0j(p,) = q,.

This implies that a system of isometries is segment closed (a property introduced by
Rimlinger [Riml]), see §2.

Theorem 2.3 has several other consequences. In §5, we interpret the systems X as
generating systems of finitely generated closed pseudogroups V on D. That is, V is
the smallest set of partial isometries between closed subintervals of D that contains the
4>j's and is stable under the following operations: composition, passage to the inverse,
restriction and finite glueing. There is a notion of equivalence of closed pseudogroups
(for instance different choices of a complete transversal for a measured foliation yield
equivalent pseudogroups).

We prove (Proposition 5.9) that if two systems X, X' generate equivalent closed
pseudogroups, then the associated groups G(X), G(X') are isomorphic (see [Rim3] for
a partial result) and the trees T(X), T(X') are isometric.

Every orbit of a system X is the set of vertices of a graph, called the Cayley graph of
the orbit, where there is an edge labelled j between x, y whenever y = 4>j(x). We view
this graph as a metric space, by giving length 1 to every edge.

If systems X and X' on a given multi-interval D have the same orbits, then the orbits
of a given x e D for X and X' are quasi-isometric (see Proposition 5.6). This follows
from Theorem 2.3 since X admits a finite refinement Xo such that every generator of Xo

may be expressed as an X'-word. It is interesting to study properties of the orbits (such
as growth or number of ends), see [Gab] for results and examples.

This article is a sequel to [GLP1], but it may be read independently.

1. Notation and definitions
For the sake of completeness, we recall here notations and definitions from [GLP1].

A multi-interval D is a union of finitely many disjoint compact intervals of R.
Components of D may be degenerate intervals, i.e. consist of only one point.

Definition 1.1. A system of isometries is a pair X = (Z), {<p;};=i^), where D is a
multi-interval and each cpj : A; —> Bj (called a generator) is an isometry between closed
(possibly degenerate) subintervals of D.

The intervals A/, Bj are called bases. A generator <pj : A, —>• Bj is a singleton if A;

is degenerate.
An X-word is a word in the generators ip^1. It is a partial isometry of D, whose

domain (defined in the obvious maximal way) is a closed interval (possibly degenerate
or empty). If <pj is not a singleton, define <fij : Aj —*• Bj as the restriction of <pj to the
interior of A,. An X-word is a word in the generators (p^]. Its domain is a (possibly
empty) open interval.

Two points x, y in D belong to the same X-orbit (resp. X-orbit) if there exists an
X-word (resp. X-word) sending one to the other. Note that the orbits are countable and
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that an orbit of X is contained in an orbit of X, with equality except perhaps for a finite
number of them. Every orbit of X may be viewed as a 'Cayley graph': the vertices are
the elements of the orbit, and there is an edge labelled j between x and y whenever

We can associate a sign ± with every partial isometry of R whose domain has non-
empty interior, simply by taking its derivative.

If X is a system of isometries on a multi-interval £>, we define (see [GLP1, §1]) a
foliated 2-complex (E(X), T) (or simply E) associated with X. Start with the disjoint
union of D (foliated by points) and strips Aj x [0, 1] (foliated by {*} x [0,1]). We get E
by glueing the strips Aj x [0, 1] to D, identifying each (t, 0) e Aj x {0} with t e Aj c D
and each (t, 1) e Aj x {1} with <Pj(t) e Bj c D. We will identify D with its image in
E.

The foliation T is the decomposition of E into leaves. A leaf is an equivalence class
for the equivalence relation ~ generated by x ~ y if there is a j = 1,... ,k with x, y
corresponding to two points in the same leaf {*} x [0, 1] of A, x [0, 1]. Each leaf L is
a simplicial 1-complex (whose embedding in E may fail to be proper): the vertices are
the intersections of L with D, and the edges correspond to the leaves {*} x [0, 1] of the
strips Aj x [0, 1]. Two points of D are in the same leaf of T if and only if they are in
the same X-orbit. For instance, if a point x e D does not belong to any base, then its
leaf is just {x}.

This suspension process is well-known for interval exchanges. See Morgan's notes
[Mor2] for the first appearance under the above generality, and [AL] and [Lev3] for
suspensions as measured foliations with Morse singularities on manifolds.

In what follows, we assume that E is connected. The 2-complex E has the homotopy
type of a finite graph, so that its fundamental group 7Ti(E) is a finitely generated free
group. We will denote by C the normal subgroup of 7T,(E) normally generated by the
free homotopy classes of loops contained in leaves of T.

Definition 1.2. If X is a system of isometries, we define G(X) — 7T|(E)/£.

2. The segment closed property
When one wants to study separation properties of the quotient of a metric space by an
isometric equivalence relation, the following notion, introduced by Rimlinger [Riml],
[Rim2], may be considered.

Definition 2.1. Let 72. be an equivalence relation on a metric space M. Then 72. is
segment closed if, given an isometry <p between geodesic segments [a, c] and [b,d] in
M sending a to b, with <p(t) equivalent to t for every t e (a, c], then a and b are
equivalent.

PROPOSITION 2.2. If X is a system of isometries, the equivalence relation on D defined
by 'being in the same X-orbit' is segment closed.

More precisely:

THEOREM 2.3. Let X be a system of isometries. Suppose p, q are isometric embeddings
[0, rf\—*• R with r\ > 0 such that q, = q{t) and p, = p{t) are in the same X-orbit for all
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but countably many t 's. Then q, and p, are in the same X-orbitfor every t. Furthermore,
there exist finitely many X-words a>\,... ,con such that for every t e [0, TJ] there is an
i e {1,..., n] with a>, (pt) = qt.

First a few definitions, for X a system of isometries. Let X = {cpj : [aj,Cj] —>
[bj,dj]}j=] k. Implicit in this notation is the fact that (pj(aj) — bj, so that we allow
a, > Cj or bj > dj. Define SI to be the set of points aj, c,, bj, dj. Let Tx be the
(non-oriented) graph having as vertices the X-orbits meeting Q, and having two edges
for each j = 1, ... ,k, one edge between the X-orbit of a, and the X-orbit of bj, and
another edge between the X-orbit of Cj and the X-orbit of dj. Define Dx to be the
number of vertices of Tx minus the number of connected components of Vx-

Say that x e R is bad for X if there is no X-word w of derivative —1 with w(x) = x,
but there is an X-word w of the form (x — u,x) -> (x + u, x) with u > 0. Say that
X is good if it has no bad point. Note that if X has a bad point, then some point of Q
is bad. Indeed, every point in the X-orbit of a bad point is also bad. But endpoints of
domains and ranges of X-words are in X-orbits meeting Q.

LEMMA 2.4. For every system of isometries X, there exists a good system of isometries
X' such that X and X' (resp. X and X') have the same orbits, and Dx = Dx1-

Proof. If x e Q is a bad point for X, with an X-word w of the form (x - u,x) ->
(x + u, x), we add a generator [x — 8, x + S] -> [x + S, x - S] of derivative — 1, with
8 < u. The orbits of X and X' (resp. X and X') are the same, where X' is the new
system of isometries. By choosing S outside a countable set, we may assume that x ± S
does not belong to the X-orbit of a point of Q. In particular, there is no X-word w of
the form (x+8 — u,x+8)^> (x + 8 + u,x + 8) with u > 0. Hence, the points x ± 8
are not bad for X'.

The graph VX' is obtained from Fx by adding a component with one vertex and two
edges, so that Dx has not changed. By iterating, one gets the result. •

The following proposition is a statement analogous to Theorem 2.3 in the open case
(compare [Lev2, Lemma VIII. 1]).

PROPOSITION 2.5. Let X be a good system of isometries. There exists 8 > 0 such that if
p,q are isometric embeddings [0, ?/] -> R with 0 < r\' < 8 such that qt = q(t) is in the
X-orbit of p, = p{t) for every t e (0, r\'), then there exists an X-word sending (po, Pr,1)
to (qo, q,t'). In particular, po and q^ are in the same X-orbit.

Proof. For every u, v in Q and (JL = ± 1 such that there exists an X-word sending u to v
with derivative //,, we fix such a word wUV:ll. Since Q is finite, we may find 8 > 0 such
that each wu „ M is defined on (u — 8, u + 8).

Define X to be +1 if the orientations of p and q coincide, and —1 otherwise. For all
but countably many t e (0, /?')> there exists an X-word w with derivative k such that
wiPt) = q<- there are countably many X-words, and such a word'can send at most one
Pi to q, with the wrong orientation.

Consider X-words w = <pil • • • <pi:: with derivative X, such that the domain of w meets
(Po. Pn1) and w(pr) = q, for some t e (0, n'). Define by induction x° = q,, <p,,(;t/) =
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FIGURE I. Pushing part of an orbit into nearby ones

x\ , so that p, = x'/. For every 0 < t' < rj', let x\, be the point of R at distance |f — t'\
from x\ and on the correct side (for instance if go < qt and <ph preserves the orientation
then x0 < x) < x^,).

Let c(w) be the number of j e { 1 , . . . , n] such that (p-tj is not defined on the whole
open interval between x'o and x'n,. Choose w with c(w) minimal. If c(w) = 0, then we
are done. Otherwise, since the set of t such that w(p,) = q, is an open interval, there is
a biggest to e [0, t) such that w is not defined at p,u and a smallest t0 e (t, rj'] such that
w is not defined at /?,<.

If to = 0 and t'o = rj', then we are done. So suppose for instance that to > 0. Let
s > 0 be the smallest j such that ^7',(*;{,) is not defined. Let r < n be the biggest
y such that <p(j (.*,(,) is not defined. Observe that both v = JC* and u — xr

ta are in Q.
Moreover, we have 0 < s < r < n since otherwise w would be defined at p,u.

Let w* be the subword of w taking xr
t to xs

t for t > to close enough to to, and let ji
be its derivative. Since q,n is in the same X-orbit as p,n, there is an X-word w' sending
u to v. We claim that w' may be chosen to have derivative fi.

If w' has the wrong derivative — fx, then by composing it with the inverse of ii>», we
get a map of the form (« — v, u) —> (w + v, u) with v > 0. Since X is good, we can
correct w' by using an X-word with derivative —1 fixing u.

Replacing the subword it), in w by wuiUi/i, we now get a contradiction to the minimality
of c(w), since rj' < S. •

Proof of Theorem 2.3. We prove that there exist finitely many X-words o>i, . . . , con such
that for every t e [0, rj] there is an i e {1, . . . , «} with w,(p,) = ^,. In particular, 9, and
p, are in the same X-orbit for every t.

Define X to be +1 if the orientations of p and q coincide, and —1 otherwise. Let
F = F(X) C [0, rj] be the set of t such that there is no X-word with derivative X taking
Pt to q,.

Clearly F is closed, since domains of X-words are open and orientations agree.
Moreover, F is countable: qt is in the same X-orbit as p, for all but countably many
f's (the orbits for X and X differ only for countably many points) and the derivative is
right for all but countably many t's.
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If X is good and F is empty, we are done by Proposition 2.5. If not, we now construct
a good system Y with the same orbits as X and F(Y) empty.

We make X good by Lemma 2.4 and assume F is non-empty. Let t0 e (0, rj) be an
isolated point of F (recall that a non-empty closed countable subset of K has an isolated
point).

If there is an X-word w sending p,a to qln, then w has derivative —A by definition of
F. Applying Proposition 2.5 on the right or on the left of p,n and composing by u>~\ we
see that there is an X-word of the form (p,0 — u, p,n) —>• (pln +u, ptu) with u > 0. Since
X is good, there is a reflection around p,n. Composing it with w contradicts to e F.

The X-orbits of p,0 and q!o are thus distinct. Construct a new system of isometries
X' by adding to X a new generator [p,a-u, Pia+U] —>• [<?(„-«, <?;„+«] with u > 0 chosen so
that the X-orbits of /?,„_„ and q,0+u do not meet fi. By Proposition 2.5, orbits for X and
X' are the same if u is small enough.

We claim that Dx> = Dx — 1. By Proposition 2.5, the X-orbits of p,a and qUt both
meet !T2. So one goes from Vx to FV by identifying two vertices belonging to the same
component, and adding two components with one vertex and one edge (if the X-orbits
of p,a-u and qtn+u are the same) or one component with one vertex and two edges
(otherwise), so that D always decreases.

Making X' good by Lemma 2.4 and iterating finitely many times (D is non-negative),
we obtain a good system of isometries Y having the same orbits as X, with F(Y) empty.

To conclude the proof, we now observe that the result is true for Y by Proposition
2.5, and that all new generators <p of Y (introduced either in the proof of Lemma 2.4 or
in the proof above) have the following property: their domain is a finite union of closed
intervals /, such that on /, the map <p agrees with the restriction of some X-word. •

3. The R-tree associated to a system of isometries
We define an action of a group on a metric space to be a left isometric action.

Let X be a system of isometries on a multi-interval D. We assume that the
associated foliated 2-complex (E(X),.F) is connected, and we consider the group
G ( X ) = TT,5](X)/Z. _

We define a metric space T(X) as follows (see for instance [Lev3]). Let n : E(X) —>•
E(X) be the covering defined by C, and T be the measured foliation lifting T. A path
Y in £(X) has a length ||y ||, defined as the total mass of the measure induced on y by
the transverse measure of T. Given JC, y in H(X), let dj(x, y) be the infimum of the
lengths of all paths from x to y. This defines a pseudo-distance on E(X) (two different
points x, y may have dy{x, y) = 0, for instance if they are in the same leaf).

The metric space T(X) is obtained by identifying two points in £(X) at pseudo-
distance 0 from each other. Since T is invariant by G(X), there is a natural (isometric)
action of G(X) on T(X). The natural projection 6 : S(X) —>• T(X) is equivariant and
continuous.

Using ideas from [GS Theorem 5.20], [Pau3 Proposition 4.6], the second author has
proved the following general result.

PROPOSITION 3.1. ([Lev3 Corollary III.5].) If X is a system of isometries, then T(X) is
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an R-tree.

We will reprove it when X is without reflection. A reflection in X is a negative
X-word having a fixed point, called its center (recall that a negative word is a word
with non-degenerate domain and derivative —1). According to Theorem 2.3, a system
of isometries is without reflection if and only if there is no x such that x +1 is in the
orbit of x — t for t > 0 small. Note that a system of isometries without reflection may
still have negative words.

THEOREM 3.2. If X is a system of isometries without reflection, then G(X) acts freely on
the R-tree T(X). Moreover, T(X) is the space of leaves ofT, that is dj(x, y) = 0 if and
only if x, y are in the same leaf.

Eliminating reflections (called 'folds') is the main technical problem in [MSI] and
the ideas of the above theorem may be found therein and in [MO].

Note that the same result is proved in [Lev3, Theorem 7], under the stronger hypothesis
that T is transversely orientable.

Remark. Arnoux and Yoccoz [AY] have constructed examples of singular measured
foliations on the projective plane such that every leaf is dense and simply connected.
Taking transversals, one gets a system of isometries X (having infinitely many centers
of reflections) such that the associated group is G(X) = Z/2Z and T(X) is a point (see
[Lev3]). This shows that the absence of reflection is not a superfluous condition (though
it may be relaxed to almost without reflection, see Theorem 5.13).

3.1. General position of surfaces in 2-complexes. Before giving the proof of Theorem
3.2, we need to define what it means for a map / of a surface with boundary 51 into a
foliated (finite) cellular 2-complex £ to be in general position.

First, a map y from a 1-complex K into £ is in a general position if it is PL (see for
instance [RS]) and every 1-simplex may be finitely subdivided so that every subinterval
maps injectively and is either transverse or contained in a leaf. Looking at the local
models, we see that every path in E may be homotoped (relatively to endpoints) to
a nearby path in general position (without increasing the total mass if the foliation is
equipped with a transverse measure).

Second, a map from a compact surface into a foliated 2-complex is in a general
position if, as a map from the surface to the 2-complex, it is PL (see for instance [RS])
and the restriction to the 1-skeleton is in general position. Any continuous map from a
compact surface into a foliated 2-complex whose restriction to the boundary is in general
position may be homotoped relatively to its boundary to a map in general position. The
preimage of the foliation defines (up to subdivision) a foliated 2-complex structure on
the surface.

Proof of Theorem 3.2. We consider the pseudometric dy on T,(X). We are going to
prove two assertions:
(1) given x, y e £(X), there exists a path y from x to y such that ||y|| = dy{x, y).
(2) the metric space T(X) associated to dp is an K-tree.
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The fact that the action of G(X) on T(X) is free then follows. Indeed, if g e G(X)
has a fixed point 8{x) in T(X), then dj(x, gx) = 0 so that x and gx are in the same
leaf by (1). Since the covering is defined by C, this implies that g is the identity.

Say that a path y : [0, 1] -> £(X) (or by abuse its image) is taut if y~](L) is
connected for every leaf L of T. If A C ^(X), let sat(A) be the union of all leaves
meeting A.

LEMMA 3.3. If a path y between x, y e T,{X) is taut, then \\y\\ = dy(x,y). If y' is
another path between x and y, then y is contained in sat(y')-

Proof. Let y, y' be two paths from x to y, with y taut. We show \\y\\ < \\y'\\ and
y C sat(y')- We may assume that both paths are in a general position with respect to T.

Since Ti\ (£(X)) = C, there is a compact planar surface P and a map / : P -> £(X)
sending one boundary component of P onto yy'~' and the others into leaves of T.
Assume / is in a general position with respect to T.

We then get a measured foliation with finitely many isolated singularities in P, such
that boundary components are contained in leaves, except one that consists of two arcs
a, a' mapped by / to y, y'.

A non-singular leaf starting at a point of a has to reach the boundary of P: it cannot
accumulate inside P, because of the transverse measure (Poincare recurrence theorem,
see [FLP, expose 5], Theoreme 1.5). It cannot return to a because of tautness. Thus it
has to reach a'. The same thing holds for the (finitely many) singular leaves. •

Using the absence of reflection, we now show:

LEMMA 3.4. No leaf of J- meets the same component ofiz~x (D) twice: every component
ofn~l(D) is taut.

Proof. Otherwise there would be a measured foliation on a surface P as before, the only
difference being that the exceptional boundary component of P now consists of an arc /3
contained in a leaf and an arc f3' transverse to the foliation. This implies that every regular
leaf meeting f3' is a segment with endpoints in fi'. Since P is compact, any such regular
leaf belongs to a maximal band of regular leaves joining two open subintervals (a, b)
and (c, d) of /3'. The leaves through the endpoints of these subintervals are singular.
Since P is planar and the number of singular leaves is finite, there is a band of regular
leaves joining two open subintervals (a, b) and (c, d) of f3' having a common endpoint
b = c. This point must be the center of a reflection. •

Let A], . . . , An, ... be the components of 7T~'(Z)). Let /„ be the intersection of An

with #„_! = sat(Ai U . . . U An-\). Since E(X) is connected, we may assume that /„ is
non-empty for n > 2. The set Bn is then path-connected for every n.

LEMMA 3.5. The set In is a closed connected subset of An.

Connectedness is analogous to Lemma 1.7 in Rimlinger [Ritnl]. Closedness is a
consequence of segment closure (Proposition 2.2).



642 D. Gaboriau et al

Proof. If x, y e /„, the interval [x, y] C An is taut by Lemma 3.4. By Lemma 3.3, it is
contained in Bn-\ because /?„_] is saturated and path-connected. This shows that /„ is
connected. We now show that it is closed.

If not, there exists -r\ > 0 and an isometric map ~p : [0, rf\ —t- An such that ~p(t) e /„
if and only if / > 0. Choose a decreasing sequence tp converging to 0 such that the leaf
of ~p(tp) contains a point qp belonging to a fixed component A of (A\ U . . . U An-\). By
Lemmas 3.3 and 3.4 there exists rf < r\ and an isometric map q : [0, rf\ —> A such that
~q{t) is in the same leaf as ~p(t) for t > 0 and qp = 7}{tp).

Using the covering projection from E(X) to E(X), one gets maps p, q : [0, r/] ->• D
such that p(t) and q{t) are in the same leaf of T for all t in (0, rf\.

By Theorem 2.3, for some 0 < r\" < ??', there is a 'band' of leaves from /?([0, r/'])
to g([0,77"]) joining p(t) to #(0- This band of leaves may be lifted to a band of leaves
starting from ~p([0, ??]). Since the covering S(X) is defined by C, the leaf issued from
p(r) in this lifted band terminates at ~q(t) for every t in (0, r/]. By continuity, /?(0) and
<7(0) belong to the same leaf. •

LEMMA 3.6. Two points x, y in A\ U . . . U An may be joined by a taut path y contained
in Bn = sat(Aj U . . . U An).

Proof. We argue by induction on n, noting that the result is true for n = 1 by Lemma
3.4. It is enough to consider the case when x e An \ /„ and y £ An. Let x' be the point
of /„ closest to x on An (it exists because /„ is a non-empty closed subinterval). Choose
/ e A] U . . . U An_\ in the same leaf as x'. The required path y between x and y is
obtained by concatenating the arc [x, x'] C An, a segment of a leaf between x' and >',
and a taut path y' between y' and y given by the induction hypothesis. The path y is
taut because the leaves meeting y' meet A\ U . . . U An_i while those meeting [x, x') do
not. •

Since every leaf of T meets 7r~'(D), assertion (1) above follows from Lemmas 3.6
and 3.3.

To prove assertion (2), we can either apply Corollary III.5 from [Lev3] or argue as
follows. We prove by induction that the metric space Kn associated with (Bn,dy |g::) is
a finite metric tree. This is true for n = 1 by Lemmas 3.4 and 3.3. From the way the
taut path y w a s constructed in the proof of Lemma 3.6, we see that one passes from Kn

to Kn+\ by isometrically glueing An+\ along the closed subinterval In+\, so that Kn+\ is
indeed a finite tree. The space T(X) is an R-tree because it is the increasing union of
the finite trees Kn. D

4. Approximating free actions on E.-trees
A finite M.-tree is a compact R-tree which is the union of finitely many segments. Let G
be a finitely generated group acting on an K-tree T, and {g\,..., gp) a fixed system of
generators for G. Let AT be a finite subtree of T.

The elements g\,... ,gp of F define partial isometries of K:

yjfi : Ai = Kn g7
l (K) -> B, = gi(K) n K
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with fiU) = gi(t). The domains A, and ranges B, are finite subtrees. We assume that
K is big enough for them to be non-empty. Let /C = (K, (V^})-

From KL we could obtain a system of isometries X(K) on a multi-interval as in [GLP1,
§2]. To approximate free actions, it turns out to be easier to work with finite R-trees.
Most definitions given for multi-intervals extend readily to K..

In particular, we asssociate to K, a foliated 2-complex E = E(£) by glueing strips
A, x [0, 1] to K. We define G{K.) = JTI'E/C by killing loops contained in leaves.

It is easy to see that G(/C) is generated by {g~\, ...,g~J,}, relations being words
g^f| • • •~gl^e" such that there exists x e K with Vfn"' • • • V '̂OO e f̂ for 1 < m < n

and # / . . . V £ ( * ) = * .
We say that KL has a reflection if there is a segment s : [—€, +e] —> K and a /C-word

fixing s(0) and sending s(—e) to s(e).
We associate as before a metric space T(IC) to tC by considering the natural pseudo-

distance dy on the covering E of E associated with L. We let n : E -» E be the
covering map.

THEOREM 4.1. Lef IC — (K, {i/̂ }) be a finite set of partial isometries between closed
subtrees of a finite R-tree K. If IC is without reflection, then T(K.) is an R-tree with a
free action of G(K). Furthermore, for any component K ofrc~] (K), the restriction of n
to K is an isometry from (K, dy) onto K.

Proof. The proof is the same as for Theorem 3.2. In the course of the proof,
corresponding to Lemma 3.4, one shows that no leaf of T meets the same component
of ic~l(K) twice. It follows that (K,dj) is isometric to K for every component K of
n~](K). To prove the equivalent of Lemma 3.5, we note that Theorem 2.3 also holds
on K. •

From now on, we assume that G is a finitely generated group acting freely on an
R-tree T. Let K be a finite subtree of T such that each A, is non-empty (see above).
Since G acts freely, it is clear that K, has no reflection.

From the presentation of G(X) given above we get a natural epimorphism G(/C) —>• G.
Since G is finitely presented (see [GLP1]), this epimorphism is an isomorphism for K
big enough. In what follows, we identify G and G(/C).

Hence if A" is a sufficiently large finite subtree of T, Theorem 4.1 yields a free action
of the group G on the R-tree T(K.). We will fix a component K of n~1(K). Using
the 'furthermore' in Theorem 4.1, we may then embed K isometrically into 7"(/C), by
identifying K with the image of K in T(IC).

It is not always true that T(JC) is (equivariantly) isometric to T for K big enough.
Indeed, if G is a free group, it happens precisely when the action on T is geometric (see
[GL]). But our goal (Theorem 4.3) is to show that T(IC) is a strong approximation of
T.

Recall that an action of a group on an R-tree is said to be minimal if there is no proper
invariant subtree. If g e G, the translation length of g on T is lr(g) = inf{d(x, gx)/x e
T). Also recall the following definition from [MO].

Definition 4.2. Let T, T be R-trees endowed with an action of a group G. A morphism
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from T to T' is an equivariant continuous map / : T -*• T such every segment in T
may be subdivided into finitely many subsegments that inject isometrically in T'.

A sequence of R-trees Tn with an action of G converges strongly (see [GS]) to an
R-tree T with a minimal action of G if there exist morphisms /„ from Tn to T and fkn

from Tk to Tn for k < n, such that fk = fno fkn, and for every x, y in Tk there exists
some n > k such that d(fkn(x), fk,n(y)) = d(fk(x), fk(y)). In particular, for every
g e G, £T,,(S) ' S eventually constant and equal to trig) (see [GS]).

A sequence of metric G-spaces Yn converges to a metric G-space Y for the equivariant
Gromov topology if, given a finite subset K of Y, a finite subset P of G, and e > 0,
then for n big enough, there is a map pn : K —*• Yn such that for every x, y in K and g
in P,

\d(gx,y)-d(gpn(x),pn(y))\ <e.

For further information on this topology, see [Paul] and [Pau2], where a slight mistake
in the definition took place, as pointed out to the third author by Skora, all results
remaining true.

It is proved in [Paul] that, for M-trees, convergence for the equivariant Gromov
topology implies convergence of the translation lengths, the converse being true if
the action is minimal and if the translation lengths are not the absolute values of a
homomorphism from G to M. The heuristic difference between strong convergence
and equivariant Gromov convergence of K-trees Tn towards T is the following: if the
convergence is strong, one is able to lift finite subsets from T to Tn isometrically, while
otherwise one may lift finite subsets only isometrically up to e.

THEOREM 4.3. IfG is a finitely generated group acting freely and minimally on an R-tree
T, then K. is without reflection for every finite subtree K in T. If Kn is an increasing
sequence of finite subtrees with union T, then G(K,n) is isomorphic to G for n big enough
and T{K,n) converges to T strongly, hence also in the equivariant Gromov topology.

Proof. Let K c K' be finite subtrees of T. Recall that we have chosen a component
K of n~](K), and thus embedded K isometrically into T(JC) (and similarly for K').
The natural inclusion S(/C) —*• £(/C') is a homotopy equivalence. We lift it to a map
T,{fC) ->• £ (£ ' ) , sending K to K , which does not increase (pseudo)-distances. The
induced map T()C) —>• T{KJ) is a morphism, since its restriction to K is isometric and
every segment in T{K) may be covered by finitely many images hjK, /i, e G. Similarly,
there are natural morphisms T(K.) —> T inducing the identity on K. Since every segment
of T is contained in Kn for n big enough, strong convergence follows. •

Remark. There is another possible approach to Theorem 4.3, using Lemmas 3.3 and 3.4
as well as Corollary III.5 from [Lev3] but not Theorem 2.3. It is based on the fact that
the length function of the action of G on T(JC) is greater than or equal to the length
function of the action of G on T, so that the action of G on T{fC) is free.

There is a combinatorial description of the R-tree T(1C), due to Rips. On K x G(fC),
define a relation ~ in the following way. First, for x, y in K and g, h in G(/C), say that
(x, g) is in relation with (y, h) if (with the above notations) there exists i in { 1 , . . . , p)
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such that y — \frj(x) and g = hg~~i (equality in G(X), with the presentation given above).
We define ~ as the equivalence relation generated by the above relation. Then

T(K) = (Kx G(/C))/~.

In these terms, the action of G(fC) on T(IC) is induced by the action on K x G(/C)
defined by g • (x, h) = (x, gh).

The distance on T{K.) is induced by the natural pseudodistance <5 on K x G(/C) defined
as follows (see [GL] in the free group case):

8«x,g), (y, h)) = inf{dK(x,xk) + dKW,k(xk),xk-i) + • • • +<W,,(x,) , y)}

where d% is the distance in K and the infimum is taken over all words gT^ • • -gTk

representing h~]g in G(/C) and all points Xj in the domain of V^-

Remark. It is possible to approximate any action of a finitely generated group on an
R-tree by actions suitably associated to finite sets of partial isometries on finite trees (see
[LP]).

5. Closed pseudogroups
The following notion is a variation on the notion of pseudogroup, as studied by Lie and
Cartan (see for instance [SS]), Veblen-Whitehead [VW], Ehresmann [Ehr], Haefliger
[Hael], [Hae2], Molino [Mol], Salem [Sal].

Definition 5.1. A closed pseudogroup on a multi-interval D is a set V of isometries
between closed subintervals of D such that:
(1) the identity on every component of D belongs to V,
(2) (inversion) \f<peV, then <p~l e V,
(3) (composition) for every ip, cp1 in V then cp o <p' belongs to V,
(4) (restriction) if <p belongs to V and A is a closed subinterval of the domain of <p,

then cp\A : A -> cp(A) belongs to V,
(5) (extension) for every (p : A -*• B, tp' : A' -> B' in V with ADA' non-empty, if

there is an isometry cp" : A U A' ->• B U B' whose restriction to A, A' is respectively
<p, <p', then <p" belongs to V.

Note that the definition makes sense for every metric space D (for instance an R-
tree), using connected subsets instead of subintervals. We allow singletons in a closed
pseudogroup, and restrictions to points in condition (4) of the definition. The composition
of two partial isometries is understood to be the maximally defined one (maybe the empty
map).

An open pseudogroup (or pseudogroup for short) is defined as a closed pseudogroup,
replacing closed by open and allowing extensions with any number of elements. We have
to take finitely many of them in the closed case to be sure that the union of domains is
still closed.

Note that the intersection of any family of closed (resp. open) pseudogroups is again
a closed (resp. open) pseudogroup. For instance, the set of all isometries between closed
(resp. open) subintervals of a multi-interval is a closed (resp. open) pseudogroup.
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Definition 5.2. The closed pseudogroup V(X) generated by a system of isometries
X — (D, {(pj}i~\...k) on a multi-interval D is the intersection of all closed pseudogroups
on D containing every <pj. A closed pseudogroup is said to be finitely generated if it is
generated by a system of isometries.

Note that the elements of the closed pseudogroup generated by X are restrictions of
extensions of Z-words.

Main example. The main examples of finitely generated closed pseudogroups are
obtained by taking a compact manifold with a measured foliation (maybe with isolated
singularities, such as thorns, centers, multi-saddles or Morse type saddles) or a finite
foliated ^-complex (same type of singularities), by taking D to be a set of closed
transversal arcs meeting every leaf, and by taking V to be the holonomy closed
pseudogroup. An easy compactness argument using flow boxes shows that D may
be chosen to be compact and that V is finitely generated. For open pseudogroups, and
measured foliations without singularities, this was proved by Sacksteder [Sac]. The
suspension construction (E(X),JT) in §1 shows that every system of isometries on a
multi-interval may be obtained that way.

If V is a closed (resp. open) pseudogroup on D, then the orbits of V are the equivalence
classes for the equivalence relation defined on D by

x ~ y «=> 3(cp : A -* B) e V, x e A, y e B and y = cp(x).

If X is a system of isometries, the orbits of X (resp. X) are the orbits of the closed
(resp. open) pseudogroup generated by X (resp. X). Note that the open pseudogroup
V(X) generated by X is not necessarily the set of restrictions of elements of V(X) to
the interiors of their domains.

The following definition is an analogue for closed pseudogroups of the notion of
equivalent pseudogroups developed by Haefliger [Hael], [Sal].

Definition 5.3. Let V,V be closed pseudogroups on multi-intervals D, D'. An
equivalence between V, V is a finite set Q = {<p, : A, —»• Z?/};=i...m of partial isometries
from closed intervals in D onto closed intervals in D', satisfying the following conditions:
• The A;'s (resp. B,'s) cover D (resp. D').
• Q a V o Q~' c V and conversely, that is for every tpi, (pj in Q, for every <p in V

and <p' in V', we have cp,• o cp o (pjx belongs to V, and <p,~' o <p' o cpj belongs to V.
An equivalence between two systems of isometries is an equivalence between the

closed pseudogroups they generate.

It is difficult to relax the finiteness assumption in the definition of an equivalence, since
if we allow uncountably many elements in an equivalence, any two closed pseudogroups
with the same orbit space cardinality would be equivalent.

Main example. The main example of equivalence Q is, as in Haefliger's case, obtained
by changing the complete transversal D in the main example above. The fact that Q is
finite follows as usual by a compactness argument on flow boxes.

Rips has introduced examples of equivalences (that he called 'elementary moves').
We have needed in [GLP1] only two of them, 'splitting' and 'erasing an interval covered
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once' (in [GLP1, Proposition 3.5 and §7]). We recall the first one since we have slightly
generalized it to remove the assumption of pureness.

Splitting. Let X be a system of isometries. Let x be an interior point of a component
/ of D. We first split the bases A, (resp. Bj) containing x in their interior, and split
Bj (resp. Aj) at the corresponding point <pj(x) (resp. (pjx(x)). We replace <pj by two
isometries, the restrictions of (pj to the closures of the two components of Aj — {x}
(resp. Aj — {(p~{(x)}). We then replace / by two disjoint intervals / ] , I2, isometric to
the closures of the components of / — {x}, embedded in R disjointly from the other
components of D, so that x is replaced by two points x\,xj- Let D' be the new multi-
interval thus obtained. Each isometry in X gives rise to a partial isometry of D' in the
obvious way, by transferring the bases that were above / either to I\ or I2 accordingly.
If {x} was the base of a singleton, then transfer it arbitrarily to either x\ or x-i. The new
system of isometries X' on D' is then obtained by taking the partial isometries defined
in this manner, and adding a singleton taking X\ to xi.

It is easy to see that X and X' are equivalent.

Theorem 2.3 has important applications to finitely generated closed pseudogroups.

PROPOSITION 5.4. (1) Let V be a finitely generated closed pseudogroup on a multi-interval
D. Then V is closed under (possibly infinite) extensions: if cf> : A —>• B is an isometry
between closed intervals of D, if (<f>a : Aa —> Ba)a is any family in V, with A C UaAo
and 0UU™ = 4>a\AanA, then 4> belongs to V.

(2) The equivalence relation whose classes are the orbits ofV is segment closed.

Furthermore:

PROPOSITION 5.5. // V and V are finitely generated closed pseudogroups on a multi-
interval D such that the V-orbit and the V-orbit of x are equal for every x in D, then V
and V are equal.

Proof. Any singleton of V is a singleton of V and conversely. Furthermore, any element
of V with domain of non-empty interior is in V and conversely, by Theorem 2.3. •

If V is a closed (resp. open) pseudogroup on D, and D' is a multi-interval contained in
D, then the set of restrictions of elements of V to D' (resp. the interior of D') is a closed
(resp. open) pseudogroup called the restriction of V to D'. For instance, any subgroup
G of Isom(R) canonically defines a closed (resp. open) pseudogroup on a multi-interval
D, simply by taking the set of restrictions of elements of G to any closed (resp. open)
interval of D. Any homogeneous system of isometries (in the sense of [GLP1, §4]) may
be obtained in this way (up to changing the embedding of D into R). This fact is a
consequence of Proposition 5.5.

Theorem 2.3 also implies that the quasi-isometry type of the orbits of a system of
isometries depends only on the generated pseudogroup. Recall that orbits of X may be
viewed as Cayley graphs (see §1). We consider them as metric spaces, by giving length
1 to every edge.

A (X, /i.)-quasi-isometry between metric spaces E, E' is a map / : E —> E' such that

VJC, y e E, \d(x, y) -/i < d(f(x), /(>•)) < M(x, y) + fi
A.
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and there is some C > 0 such that d(x', / ( £ ) ) < C for all x' in £". Note that the
composition of a (X, /^)-quasi-isometry and a (A/, /Li')-qiiasi-isometry j s a (XX', X/j.' + fx)-
quasi-isometry.

PROPOSITION 5.6. Let X, X' be systems of isometries on a multi-interval D, having the
same orbits. Then for every x in D, the X-orbit and X'-orbit of x are quasi-isometric.

Proof. By Theorem 2.3, every generator of X (resp. X') has a finite expression in terms
of the generators of X' (resp. X). We may then apply the classical argument (see for
instance [Gro]) used to show that the quasi-isometry type of the Cayley graph of a
finitely generated group does not depend of the choice of a finite generating system. •

More generally:

PROPOSITION 5.7. Let X, X' be system of isometries on multi-intervals D, D'. If Q is an
equivalence between X and X', then for every x in D the X-orbit of x and X'-orbit of
Q(x) are quasi-isometric.

Note that if x e D belongs to the domain of i/f, \//' in Q, then the X'-orbits of
if(x), \/f'(x) coincide, and conversely when permuting X and X'.

Proof. For every cp in V(X) which is either a generator of X or the identity of some
component of D and every xfr, x/r' in Q, by definition of the generated closed pseudogroup,
the domain of i/r'o(potj/~] may be finitely subdivided so that the restriction of \fr'o(po\jf~]

to every piece is a restriction of some X'-word. Define A. to be the maximum of the
lengths of these X'-words for all such f o p \/r~] (with non empty domain) and of the
lengths of the X-words obtained similarly by permuting X and X'.

It is clear that any map from the vertices of the X-orbit of x to the vertices of the X'-
orbit of Q(x), which to y associates any point of Q(y) is (A,, A.)-quasi-isometric, hence
that these orbits are (X, IX + l)-quasi-isometric. •

We now show that the group G(X) associated with a system of isometries X, and the
M-tree T(X) constructed in §3, depend only on the equivalence class of X.

LEMMA 5.8. IfX, X' are systems of isometries, such that X is obtained from X' by adding
a new generator 4> : A -*• B such that x and 4>(x) are in the same X'-orbit for every x
in the domain of (j>, then G(X) and G(X') are isomorphic.

Proof. Fix a base point in A C S(X') C S(X). Consider the composite map
7TiE(X') —*• 7T]S(X) —• G(X) induced by inclusion and canonical projection. Any
closed loop in a leaf of E(X') yields a closed loop in a leaf of E(X), hence one has a
map G(X') -> G(X). Any path y in 7T|E(X) is homotopic (rel. base point) to a path
meeting the interior A x (0, 1) of the new strip in finitely many leaves {XJ } x (0, 1), every
such leaf being covered only once. We will assume our paths to have this property.

Since Xj and 4>(XJ) are in the same leaf of S(X'), the image of y in G(X) is equal
to the image of a path contained in H(X'). So the map G(X') —> G(X) is onto.

If the homotopy class of a path y in TT\ S(X') is trivial in G(X), then y is homotopic
(rel. base point) in £(X) to a composite path n^|a~' /9,ai with /S, a closed loop in a
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leaf of T,(X). Take a disk D in a general position with respect to A x {|}, with boundary
y-'n^a-'Aa,,

The intersection D C) (A x {̂ }) consists of finitely many arcs and loops. We may
remove them one by one by considering at each step the outermost disk. We get that y
is homotopic (rel. base point) in S(X) to a composite path n™=1a'~'/S-a- with p[ and or-
contained in T,(X').

We want to prove that y is, in fact, homotopic (rel. base point) in E(X') to such a
product path (hence trivial in G(X')). Subdividing, we see that it is enough to prove it
for a loop of the form [x, <p(x)]l)[4>(x), <p(y)]U[<p(y), y]U[x, y] where [x,y] C A and
[x, 4>(x)], [</>(y), y] are arcs contained in leaves of E(X') (such a loop is nullhomotopic
in T,(X)). But this follows from Theorem 2.3, as after finitely many subdivisions, one
may assume that [x, y] is contained in a band of leaves in E(X') between [x, y] and

Note that this cannot be generalized to the non-finitely generated case. For example,
consider {</>,-},-<=N where 0O is the singleton {0} -> {2} and (f>n : [^y, £] -*• [2+^-j-, 2+^]
for every n > 1 is the translation by 2. Then the group naturally associated to this infinite
system of isometries is the free group of rank 2. But if we add the positive generator
[0, 1] —> [2, 3], the associated group becomes Z.

PROPOSITION 5.9. / / two systems of isometries X\,X2 on multi-intervals D\,Di are
equivalent, then the groups G(X\), GiXj) associated with X\, X-i are isomorphic.

Proof. We first claim that a splitting does not change the group. This may be found in
[GLP1], but we give the argument for the sake of completeness. Suppose X' is a system
of isometries obtained from a system of isometries X by a splitting. When we split one
base, then we replace one band by two bands, hence introducing a new generator in the
group. But one creates a new loop in leaves (going by the left side of one band and
coming back by the right side of the other), giving a relation that kills the new generator.
When we split D, we immediately introduce a new singleton, hence a new band (reduced
to one leaf). Pinching this leaf induces a homotopy equivalence between the old and
new foliated 2-complexes, preserving the loops in leaves.

Let Q be an equivalence between V(X\) and ViXz). Split Xi at all endpoints
of ranges of elements of Q. One gets a new equivalence by taking the appropriate
restrictions of the elements of Q. Keeping the same notations, the range of any
component of Q is now a component of £>2.

Assume V: A -> B, \j/': A' ->• B are elements of Q with the same range. We claim
that we may replace X\ by a system of isometries having the same associated group,
equivalent to X2 by an equivalence having one less element.

Let E be the union of domains of elements of Q different from \fr. If one replaces
i/f by its (finitely many) restrictions to every component of A — E, one still gets an
equivalence between X] and X2, since if i/f" in Q coincides with i[r on / C A, then
i/f o (\j/")~] defined on ir"(I) is in V{Xz). Split X\ at the endpoints of every component
J of A — E. This does not change the equivalence, since no such endpoint is in the
interior of a domain of an element of Q. Let J again be the corresponding component
of D\. For any such J, add to X\ a generator <j>] sending J onto (i/O"1 ° i'(J) by
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(ir')~] o -ijr. Since <pj is in V(X]), this does not change the group by Lemma 5.8. Pinch
to a point each leaf of the band J x [0, 1] in £(Xi) corresponding to each cj>j. Since J
was a component of D, we obtain a new system of isometries. This leaf-wise homotopy
equivalence does notchange the associated group. The elements of Q corresponding to
i/f are no longer necessary to the equivalence, since they now coincide with a restriction
of i\i'. This proves the claim.

By induction, we may assume that the ranges of two elements of Q are disjoint
components of D2. Split X\ at all endpoints of domains of elements of Q, and split
open accordingly the elements of Q. Split X2 at all endpoints of ranges of elements of
the new Q (that are in the interior of D2). Since a component of the old D2 contained
precisely one range of the old Q, the new Q without further splitting naturally defines
an equivalence between the new X, and X2. Now both domains and ranges of elements
of Q are components of D\, D2 respectively.

Proceeding as above, one can change X2, Q so that a component of D\ contains
precisely one domain of element of Q (keeping the analogous fact true for D2). Hence
the equivalence defines a homeomorphism \lr\D\ —> D2 which is an isometry on each
component.

Now add to X\ (resp. X2) the images of X2 (resp. Xi) transferred on D\ (resp. D2)
by using the isometry rjr. By Lemma 5.8, the associated groups are unchanged. We
now claim that the associated groups are isomorphic. Indeed i/r extends to a foliation-
preserving homeomorphism between the foliated 2-complexes E(X)) and D(X2). •

PROPOSITION 5.10. If X, X' are equivalent systems of isometries, then T(X), T(X') are
isometric by an isometry which commutes with the actions of G(X), G(X').

Proof. Indeed, the proof of Proposition 5.9 may be followed to get the result. •

Ideas in the proof of Proposition 5.9 will be used in [Pau4] to give a conceptual
computation of the group associated to a homogeneous system (see [GLP1, Proposition
4.2]).

Finally, we discuss reflections in systems of isometries.
Recall that a reflection in a closed or open pseudogroup is an element with non-

degenerate domain and derivative — 1, having a fixed point, called its center. According
to Theorem 2.3, a finitely generated closed pseudogroup V is without reflection if and
only if there is no x such that x + ( is in the orbit of x — t for t > 0 small.

Observe that being without reflection is not invariant under equivalence. For one thing,
a splitting may destroy a reflection. Furthermore any closed pseudogroup is equivalent
to one having a reflection. To see this, consider a tripod, i.e. the finite tree union of
three unit intervals [o, a][o, b], [o, c] glued at o, and consider the partial isometry of the
tripod sending [a, b] to [a, c]. Then the natural systems of isometries obtained as in §1
by cutting the tripod into either [a, b] v [o, c] (disjoint union) or [b, c] v [a, o] generate
equivalent closed pseudogroups, but the second one has a reflection. Moreover, they are
equivalent to the identity on an interval of length 2, hence they may be included in any
pseudogroup.

Even after finitely many splittings, we may still have reflections. For instance if a
center of reflection x is in the interior of another generator of X, and if the orbits of X
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are dense in D, there are infinitely many centers of reflections.

PROPOSITION 5.11. IfV is a finitely generated closed pseudogroup, then there are finitely
many orbits of centers of reflections.

Proof. Since E (as defined in [GLP1, §3]) is finite, and since the result is obvious for
families of finite orbits, we need only consider the case when X has only one minimal
component (by [GLP1, §3]). The homogeneous case is easy, since then the centers
of reflections are the fixed points of elements of the finitely generated subgroup P of
Isom(R). In the non-homogeneous case X_, (as defined in [GLP1, §4]) has only a
finite number of orbits of centers of reflection, since X_, is a finite union of (possibly
twisted) families of finite orbits (see [GLP1, §3]). Furthermore this finite number is
bounded independently of /. Indeed, the number of disjoint Moebius bands that can
be embedded in E(X_,) is bounded by the rank of Hom(7riI!(X_,), Z/2Z), which is
uniformly bounded since the homotopy type of £(X_,) does not change. Since any finite
number of orbits in X may be found in X_, for t small enough, the result follows. •

In [Gus], there is a computation of the exact number of orbits in terms of the algebraic
structure of a slight variation of the group G(X).

Definition 5.12. A closed pseudogroup V on a multi-interval D is almost without
reflection if only finitely many points of D are centers of reflections.

It is clear that any closed pseudogroup equivalent to V is almost without reflection.
Indeed, after finitely many splittings, the centers of reflections that remain are in the
interior of the domains of the equivalence, so that reflections may be transferred.

THEOREM 5.13. The conclusions of Theorem 3.2 hold ifX is a system of isometries almost
without reflection.

Proof. After a finite number of splittings, which does not change G(X) nor T(X) nor
the fact that dy{x, y) = 0 if and only if x, y are in the same leaf, we may assume that
no center of reflection of V{X) is in the interior of a component of the multi-interval D.
Hence the first claim of the proof of Theorem 3.2 holds, and the rest of the proof is the
same. •

REFERENCES

[AL] P. Arnoux and G. Levitt. Sur l'unique ergodicite des 1-formes fermees singulieres. Inv. Math. 84
(1986), 141-156.

[AY] P. Arnoux and J.-C. Yoccoz. Construction de diffeomorphismes pseudo-Anosov. C. R. Acad. Sci.
Paris 292(1981), 75-78.

[BF] M. Bestvina and M. Feighn. Stable actions of groups on real trees. Preprint. (February 1992).
[Ehr] C. Ehresmann. Sur la theorie des espaces fibres. Coll. Int. Top. Alg. Paris, CNRS (1947), 3-15.
[FLP] A. Fathi, F. Laudenbach and V. Poenaru. Travaux de Thurston sur les surfaces. Asterisque. 66-67

(1979).
[Gab] D. Gaboriau. Dynamique des systemes d'isometries et actions de groupes sur les arbres reels. These.

Toulouse, June 1993.



652 D. Gaboriau et al

[GL] D. Gaboriau and G. Levitt. The rank of actions on M-trees. Ann. Scien. E.N.S. Paris. To appear.
[GLP1] D. Gaboriau, G. Levitt and F. Paulin. Pseudogroups of isometries of R: Rips' theorem on free

actions on R-trees. Isr. J. Math. 87 (1994), 403-428.
[Gro] M. Gromov. Groups of polynomial growth and expanding maps. Pub. I.H.E.S. 53 (1981), 53-78.
[GS] H. Gillet and P. Shalen. Dendrology of groups in low Q-ranks. J. Diff. Geom. 32 (1990), 605-712.
[Gus] P. Gusmao. Groupes et feuilletages de codimension 1. These. Toulouse, June 1993.
[Hael] A. Haefliger. Groupoides d'holonomie et classifiants. Structures transverses des feuilletages.

Asterisque. 116 (1984), 70-97.
[Hae2] A. Haefliger. Pseudogroups of local isometries. Proc. Vth Coll. in Differential Geometry.

L. A. Cordero, ed. Research Notes in Mathematics 131. Pitman: London, 1985, pp 174-197.
[Levl] G. Levitt. Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie. J. Diff.

Geom. 31 (1990), 711-761.
[Lev2] G. Levitt. La dynamique des pseudogroupes de rotations. Invent. Math. 113 (1993), 633-670.
[Lev3] G. Levitt. Constructing free actions on M-trees. Duke Math. J. 69 (1993), 615-633.
[LP] G. Levitt and F. Paulin. Geometric group actions on trees. Preprint Univ. Toulouse (Sept. 1994).
[Mol] P. Molino. Riemannian Foliations. Progress in Mathematics Vol. 73. Birkhauser: Basel, 1988.
[Mori] J. Morgan. A-trees and their applications. Bull. Amer. Math. Soc. 26 (1992), 87-112.
[Mor2] J. Morgan. Notes on Rips' lectures at Columbia University, October 1991. Manuscript.
[MO] J. Morgan and J.-P. Otal. Relative growth rate of closed geodesies on a surface under varying

hyperbolic structures. Comm. Math. Helv. 68 (1993), 171-208.
[MSI] J. Morgan and P. Shalen. Valuations, trees and degeneration of hyperbolic structures II, III. Ann.

Math. 122 (1988), 403-519.
[Paul] F. Paulin. The Gromov topology on R-trees. Topology and its Appl. 32 (1989), 197-221.
[Pau2] F. Paulin. Topologie de Gromov equivariante, structures hyperboliques et arbres reels. Invent. Math.

94 (1988), 53-80.
[Pau3] F. Paulin. Degenerescences algebriques de representations hyperboliques. Proc. Coll. sur les varietes

de dimension 3 (Luminy 1989). To appear.
[Pau4] F. Paulin. A dynamical system approach to free actions on R-trees: a survey with complements.

Proc. Haifa 1992 Conf. on Geometric Topology. Contemp. Math. Amer. Math. Soc.lfA (1994), 187-
217.

[Riml] F. Rimlinger. Free actions on R-trees. Trans. Amer. Math. Soc. 332 (1992), 315-331.
[Rim2] F. Rimlinger. M-trees and normalization of pseudogroups. Exp. Math. 1 (1992), 95-114.
[Rim3] F. Rimlinger. Two-complexes with similar foliations. Preprint. (1992).
[RS] C. Rourke and M. Sanderson. PL Topology. Springer: Berlin, 1985.
[Sac] R. Sacksteder. Foliations and pseudogroups. Amer. J. Math. 87 (1965), 79-102.
[Sal] E. Salem. Riemannian foliations and pseudogroups of isometries. (Appendix in 'Riemannian

foliations', P. Molino, Progress in Mathematics Vol. 73, Birkhauser: Basel, 1988, pp 265-296.
[Shal] P. Shalen. Dendrology of Groups: An Introduction. Essays in Group Theory. S. M. Gersten, ed.

M.S.R.I. 8, Springer: Berlin, 1987.
[Sha2] P. Shalen. Dendrology and its Applications. Group Theory from a Geometrical Viewpoint. E. Ghys,

A. Haefliger, A. Verjovsky, eds. World Scientific: Singapore, 1991.
[SS] I.M. Singer and S. Sternberg. The infinite groups of Lie and Cartan. J. Anal. Math. 15 (1965),

1-114.
[VW] O. Veblen and J. H. C. Whitehead. The foundations of differential geometry. Camb. Tracts Math.

29 (1932).


