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SYMMETRY OF CONSTANT MEAN CURVATURE
HYPERSURFACES IN HYPERBOLIC SPACE

GILBERT LEVITT AND HAROLD ROSENBERG

Introduction. In a recent paper, M. Do Carmo and B. Lawson studied
hypersurfaces M of constant mean curvature in hyperbolic space [2]. They use
the Alexandrov reflection technique to study M given the asymptotic boundary
0M. For example, one of their theorems says M is a horosphere when OM
reduces to a point. They also prove a Bernstein type theorem for minimal graphs.

In this paper we shall extend their results to other boundary conditions. We
prove an embedded M, of constant mean curvature, with OM a subset of a
codimension one sphere S, either is invariant by reflection in the hyperbolic
hyperplane H spanned by S or is a hypersphere. In the former case M is a
"bigraph" over H: it meets any geodesic orthogonal to H either not at all or
transversely in two points (one on each side of H) or tangentially on H.
As a corollary of this, when O(M) consists of two pointsp and q, then M is a

hypersurface of revolution about the geodesic joining p to q.
We also consider minimal immersed hypersurfaces M C H with M regular at

o. When OM consists of two disjoint spheres S, $2 we prove M is a catenoid
or M is the union of the two hyperbolic planes spanned by S and S2.

The principal techniques we use to obtain these results are the Alexandrov
reflection principle and R. Schoen’s adaptation of this to complete minimal
surfaces [4].

I. Definitions and notations. When we refer to plane, distance, line, etc. we
always mean the hyperbolic object in Hn. We work with the Poincarb model of
H: H is the interior of the unit ball in R. The asymptotic boundary of H is
identified with the boundary of the unit ball and denoted by S(o). Given
A c H, we denote by .4 the set of accumulation points of A in S(o) and call
it the asymptotic boundary of A. When the context is clear, we will omit the
subscript o.

Fix a hyperplane P0 in Hn. We have two natural coordinate systems. First, one
can use the geodesics orthogonal to P0 to give each point coordinates (x, t) where
x P0 and is the distance from x to (x,t). This system does not suit our
purposes because translation along one geodesic orthogonal to P0 does not leave
invariant another such geodesic. Also this does not extend to a coordinate system
on S(o).

Instead we shall use the latitude-longitude system. More precisely, choose
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coordinates in P0 and let y be the geodesic orthogonal to P0 at an origin 0 P0.
Let Yt be the 1-parameter group of isometries of H which along , is translation
by a distance and such that the curves t---> 7/(x) are orthogonal to P0 for each
x P0 (a positive sense along 7 is chosen once and for all). Then each point of
H has coordinates (x, t) where x P0 and 7t(x)= (x,t).

Denote by Pt the plane "yt(Po). We refer to Pt as a horizontal plane and the
curve t-->yt(x) as the vertical curve through x. Notice that for each s the
reflection of H through the plane Ps is given by the formula (x,t)(x,2s- t).

Let St O oPt. Then the coordinate system (x,t) extends to a coordinate
system on S(oo) where each point (except the two limit points of y) has a unique
coordinate (x, t), x So, R. By a Moebius transformation we can send -/to
the north pole-south pole geodesic and P0 to the equatorial plane. Then the
coordinates on S(oo) are the usual latitude-longitude coordinates.
We say A c H is a graph over Ps if the vertical projection of A to P is

injective, and A has locally bounded slope if the vertical field v (0, 1) is not
tangent to A at any interior point of A.
We say A is above B, A > B, if whenever a vertical curve meets both A and B,

then every point of A (on this vertical) is above every point of B. These notions
extend directly to S(o) with respect to the horizontals St and the vertical curves.

For A C H U S(oo) and s R, let As/ ((x,t) A It > s) and similarly let
As- be the set of points of A below Ps. Let A*+ ((x, 2s t)I (x, t) A/ ). Also
let Hs/ (resp. Hs- ) be the set of all points above Ps (resp. below P,).
A complete hypersurface M is a hypersphere over Po if all points of M lie at the

same distance from P0.

II. The main result. Now let M be a complete properly
hypersurface in H of constant mean curvature. Our main result is:

embedded

THEOREM 2.1. If booM C So Ooo(Po), then M is a hypersphere (in which case
OooM So) or M is invariant under the reflection through Po and M is a bigraph
over Po (as defined in the introduction).

Remarks.
1. It would be interesting to have examples of M as in 2.1, having prescribed

boundary. For example, given 3 (or n) points on the equator, does there exist a
constant mean curvature M with boundary these points?

2. Suppose OooM So and M satisfies 2.1. Then is M a hypersphere? Do
Carmo and Lawson claimed this in a preliminary version of [2], however, their
proof assumed So is the homological boundary of M. Since our paper was first
written, J. Gomes has shown the result to be false without this additional
assumption.

We shall use the following version of the maximum principle [4]"
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1. Let M,M. be connected complete hypersurfaces of constant mean
curvatures Cl, C_. Suppose M and M. are tangent at an interior point x and
their mean curvature vectors both point in the vertical up direction. If M is
above M2 in a neighborhood of x and C2 > Cl, then M M2.

2. Assume x is an interior point of 0M and 0M2, OM, 0M2 are tangent at x
and MI,M2 as well. Also suppose the mean curvature vectors of MI,M2 point in
the vertical up direction at x. If M is above M2 in a neighborhood of x and
C2 > C1, then M M2 near x (and M,M2 are analytic continuations of each
other).

Proof of 2.1. Let C and C’ be the connected components of Hn- M and
assume the mean curvature vector X of M points into C. Clearly we can suppose
X =/= 0 since X 0 easily implies M P0. So there are points of M strictly above
or below P0; we can assume above. For sufficiently large, Pt is disjoint from M,
so there is a largest T > 0 such that Pr f3 M vs O.

Let J (t [O,T]IM,/ is a graph of locally bounded slope over Pt,
Mr*+ > Mr-, and for s > t, X points into Hs- at each point of M t3 Ps). We have
T J and if J, < s < T, then s J. We shall prove 0 J by showing J is
open and closed in [0, T].

First we see why J is closed. Suppose (t, T] c J. If Mr+ is not a graph then two
points of Mt/ are on the same vertical, so there is an s, < s < T, and x P0,
such that (x, t) and (x,s) are both in M. We choose s so there are no other points
of M on the vertical L joining (x,t) to (x,s). Now M is a graph in a
neighborhood of (x,s), never vertical, and X points into H- at (x,s). This
implies L c C and M is tangent to Pt at (x, t) and below Pt in a neighborhood of
(x,t). The reason for the latter property is the vertical curves meeting M in a
neighborhood of (x,s), descend to fill a neighborhood of (x,t) in Pt. So if any
point of M near (x, t) were strictly above Pt there would be some z strictly larger
than for which M/ is not a graph. This violates (t, T] c J.
Now since M is entirely below Pt in a neighborhood of (x,t), X must point

into Hi- at (x,t). But LcC and X points into C along M so this is a
contradiction, and Mr/ is a graph over Pt. Mt/ has locally bounded slope as well.
Also Mr*/ > Mt- since were this not the case, it would already fail to be true for s
slightly larger than t.

Finally, the mean curvature vector X points into Ht- at each point of M 3 Pt,
since at (x, t) M, M is either entirely below Pt at (x, t) (in which case X points
down) or (x,t) is an accumulation point of points of M above Pt, and then X
points into Ht- by continuity. Notice that our convention allows X to be tangent
to P, and point into Ht-. So we have proved J is closed.
Next we show J is open. Let [t,T] c J with t > 0. Let (x,t) M and let

D c M be a disc containing (x,t). Notice that M is not vertical at (x, t), for if
this were so, consider the half discs Dt*/ and Dr-. They have the same boundary,
they are tangent at (x, t) and their mean curvature vectors are the same at (x, t).
Moreover, D,*/ is not vertical at points strictly below Pt and Dt*/ > Dr-, hence



56 GILBERT LEVITT AND HAROLD ROSENBERG

they do not cross at (x,t). So by the maximum principle, Dr*/ Dt- near (x,t)
and by analytic continuation Mt*/ Mr-. But > 0, so this contradicts
aMeSo.

This proves M is a graph in a neighborhood U of P, and not vertical in U. This
implies X points down in U as well (for s (0, t), the part of M between P, and
Pt is compac0. It remains to verify that M*/ > M,- for s near t. This is done
exactly as in [4] so we just sketch the argument here. Since M U is a graph, we
have M*/ V > M,- for V a neighborhood of Pt, V c U, and s near t. Also
M,/ V is compact and its image under reflection through Pt is disjoint from
Mt-, so by continuity, for s near t, we have (M*/- V)> M,-. This means
M*/ > M,- for s near t.

This argument uses the fact that Mr/ is strictly above Mt- whenever (t, T] c J
and :/: 0. If not, there would be a largest o > for which this fails. Then Mr*o/
and Mt0- are tangent at some point q and their mean curvature vectors have the
same direction at q (M separates into two connected components and if X points
into C then the mean curvature vector of Mto/ also points into C). Thus M
would be invariant under reflection through Pt0 by the maximum principle and
this violates the hypothesis on 0ooM. Thus we have proved 0 J; in particular, X
points into H0- at each point of M t P0-

Suppose there are points of M strictly below P0. Then the same reasoning used
to prove J [0, T] shows M0- is a graph of bounded slope and X points into H0/
at each point of M N P0 Oust turn H over). Hence X is horizontal along
M N P0, or equivalently M is vertical at each x M N P0. Let x M N P0 and
D be a disc in M containing x. Since D’/ > D0- and D is vertical at x, not
vertical at each y D Ps, s > 0, we conclude, as before, D* D and hence
M* M by analytic continuation. Thus when M has points on both sides of Po
we know M is invariant by reflection through P0. Since ), was an arbitrary
geodesic orthogonal to P0, we also know M is a bigraph over P0.
To complete the proof of theorem 2.1, we must show that if M c H0/ then M

is a hypersphere. Following [2], we first show the mean curvature H of M must be
between 0 and 1:0 ( H ( 1. Consider the family L of horospheres tangent to
S() at the south pole, the parameter " chosen so that L0 the south pole and

L S(oo). For small positive -, L is disjoint from M so there is a smallest -such that L M :/: O. Let x be such an intersection point; clearly x Ps t M,
> 0, so X points into H- at x. Now the mean curvature vector Y of L, at x also

points into H- and M and L are tangent at x so X and Y have the same
direction at x. Therefore H is less than the mean curvature of L,, which is one,
and we have strict inequality by the maximum principle.

Let NO be the hypersphere of H with boundary OP0 and with mean curvature
vector pointing down and of length H. Consider the family of hyperspheres
N ytNo. We claim M N0. If not, there are points of M above or below N0.

Suppose there are points below. Then there is a smallest negative such that
N M va O. N is tangent to M, on one side of M, and their mean curvature
vectors have the same orientation. So by the maximum principle M Nt, which
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contradicts OM c So. A similar argument works if there are points of M
above NO Q.E.D.

COROLLARY 2.2. In addition to the hypothesis of 2.1, assume OooM consists of
two distinct points p and q. Then M is a hypersurface of revolution about the
geodesic F joining p to q. More precisely, let Q be any hyperplane orthogonal to F.
Then M is transverse to Q and M N Q is a round sphere centered at I" f Q.

Remark. These hypersurfaces of revolution have been classified by Hsiang
[3], and in this paper he obtains a special case of corollary 2.2.

Proof of 2.2. It follows immediately from 2.1 that M is transverse to Q except
possibly at y--I" t3 Q, and that M Q is either the empty set, or (y), or a
round sphere centered at y. It cannot be empty since Q separates p and q. If
M (3 Q (y), then M is tangent to Q at y and lies on one side of Q near y. It
follows that hyperplanes Q’ close to Q, on the other side, do not meet M. This is
a contradiction, so M f3 Q is a round sphere.

III. Minimal hypersurfaces of H". Let M be a complete minimal hypersur-
face of H". We say that M is regular at o if the asymptotic boundary B of M is
a C2 codimension one submanifold of S() and/ M U B is of class C on
B. M. Anderson has proved that any C 2 codimension one submanifold
B c S(o) bounds a minimal M C H [1]. We do not know if one has boundary
regularity as in the euclidean category (this seems likely for area-minimizing
minimal hypersurfaces). In this section we adapt the work of R. Schoen to our
context to obtain information about M given B.

THEOREM 3.1. Let B C S(o) be a C2 codimension one immersed boundary, not
necessarily connected. Assume Bo+ is a graph of locally bounded slope and

B+ > Bo-. Let M be a minimal hypersurface immersed in H with OM B and
M regular at oo. Then Mo+ is a graph of locally bounded slope and M+ > Mo-.

Proof. First we remark that M is orthogonal to S(oo) along B. We see this as
follows (assuming for simplicity that B is embedded). Let x B, and
S,S2 c S(oo) be round codimension one spheres passing through x such that
each Si is tangent to B at x and S and B are on one side of each other at x, and
S and $2 are on opposite sides of B at x (this is where we need B to be C2). Let
D1,D2 be the disks on S(oo) with boundary S,$2. Choose the Sk small enough
so that intDk is disjoint from B for k 1,2. Let y intDk, and S(y) be a small
round sphere centered at y. Let H(y) be the hyperbolic plane of H with
boundary S(y). For S(y) small, H(y) is disjoint from M. As S(y) grows to
become Sk, H(y) stays disjoint from M since if this were not so we would have
M- H(y) by the maximum principle. Thus M is forced between the two
hyperbolic planes HI,H2 with boundaries SI,S2, and is orthogonal to B.

Let T > 0 be the largest T such that Pr B =/= . Let J [0, T]IMt+ is a
graph of locally bounded slope and M+ > Mt- ). As in the proof of 2.1, we see
that J is open and closed in [0, T], hence 0 J and 3.1 is proved. We will not go
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through the details, however some comments are in order. M need not be
embedded to make the argument since the maximum principle applies without
worrying about local orientations. Also M orthogonal to S(oo) along B implies
M is a graph of locally bounded slope in a neighborhood of Bo/. One can prove,
as in theorem 2 of [4], that if B is embedded and B+ B0- then M is embedded
and M* M.

THEOREM 3.2. Let Sl, ’2 be disjoint round spheres in S(oo) and let M be a
connected minimal hypersurface immersed in H with OooM S U S2 and M
regular at oo. Then M is a catenoid (i.e., M is embedded and M is a hypersurface
of revolution about a geodesic).

Remark. By a conformal transformation of S(o) we can make S and $2
horizontal and symmetric with respect to the equatorial plane (send the geodesic
joining the centers of S and S2 to the north pole-south pole geodesic). If S and
S: are close enough then there exist exactly two catenoids with boundary $1 O S2

(this can be deduced from [3]). If S and S: are too far apart, there is no catenoid
joining them; thus the only minimal hypersurface bounded by $1 tA S2 is the
union of the two hyperplanes spanned by S and S_.

Proof of 3.2. We can assume S, S: are horizontal and symmetric with respect
to the equator. Then by 3.1, M is also symmetric with respect to the equatorial
plane. It suffices to show M is a surface of revolution about the geodesic
joining the north and south poles. Let P be a hyperplane containing "t’; we need
show M is invariant by reflection in P. Rotate H" by r/2 so that P becomes
horizontal. Then B S tA $2 satisfies the hypothesis of 3.1 from above and
below P so M is invariant by reflection through P.

THEOREM 3.3. Let B C S(oo) be a C2 codimension one submanifold and
suppose B is a graph of locally bounded slope over So. Let M be a hypersurface of
constant mean curvature H embedded in H with the homological boundary of M
equal to B. Then M is a graph over Po, and ifH =/= 0 then M is uniquely determined
by the value of H and the component of Hn- M into which X points (top or
bottom). If M is minimal, then M is a graph and is unique, even if M is only
assumed to be immersed with OooM B.

Remark. The existence of a minimal M with 0ooM B is proved in [l]. The
unicity of a minimal embedded M with OooM B is in [2].

Proof of 3.3. It suffices to show that, if M and M’ are as in 3.3 and have the
same curvature H (with X and X’ pointing the same way if H v 0), then
"t’tM M’=O for =/=0.

Suppose on the contrary that "itM M’ ( for some nonzero (say > 0).
Let T be the largest t with this property. Then at anyp yrM M’ the surfaces
7rM and M’ are tangent, are on one side of each other, and have the same mean
curvature vector (because on the vertical curve through p there is no point of M’
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above p and no point of vrM below p). By the maximum principle vrM M’,
hence T O.
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