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MOST AUTOMORPHISMS OF A HYPERBOLIC GROUP
HAVE VERY SIMPLE DYNAMICS

BY GILBERT LEVITT AND MARTIN LUSTIG

ABSTRACT. – LetG be a non-elementary hyperbolic group (e.g. a non-abelian free group of finite rank).
We show that, for “most” automorphismsα ofG (in a precise sense), there exist distinct elementsX+,X−

in the Gromov boundary∂G of G such thatlimn→+∞ α
±n(g) = X± for every g ∈ G which is not

periodic underα. This follows from the fact that the homeomorphism∂α induced on∂G has North–South
(loxodromic) dynamics. 2000 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – SoitG un groupe hyperbolique non élémentaire (par exemple un groupe libre non abélien de
rang fini). Nous montrons que, pour “la plupart” des automorphismesα deG (en un sens bien précis), il
existe deux éléments distinctsX+,X− dans le bord de Gromov∂G deG tels quelimn→+∞ α

±n(g) =
X± pour toutg ∈ G non périodique sous l’action deα. Ceci résulte du fait que l’homéomorphisme∂α
induit sur ∂G a une dynamique Nord–Sud (loxodromique). 2000 Éditions scientifiques et médicales
Elsevier SAS

0. Introduction and statement of results

Let α be an automorphism of a (word) hyperbolic groupG. Fixing g ∈ G, we consider the
sequence of iteratesαn(g), for n> 1. We assume thatg is notα-periodic, so thatαn(g) goes off
to infinity in G.

We will show that, for “most” automorphismsα of G (in a sense that will be made precise),
there exists a pointX+ in the Gromov boundary∂G such thatαn(g) converges toX+ for every
nonperiodicg. If G is free on a finite setA, this says that there exists a sequence of letters
a±1
k ∈A∪A−1 such that, for any non-periodicg, thekth letter ofαn(g) equalsa±1

k for n large.
This dynamical behavior is best expressed in terms of the homeomorphism∂α induced byα

on∂G: for mostα ∈ AutG, the map∂α has North–South dynamics in the following sense. We
say that∂α, or α, hasNorth–South dynamics(also called loxodromic dynamics) if∂α has two
distinct fixed pointsX+,X−, andlimn→+∞ ∂α

±n(X) =X± uniformly on compact subsets of
∂G \ {X∓}.

This implies (see Proposition 2.3) thatthe set ofα-periodic elementsg ∈ G is a virtually
cyclic subgroup(possibly finite), and limn→+∞α

±n(g) = X± if g ∈ G is notα-periodic. For
an arbitrary automorphism, it is proved in [15] thatαn(g) limits onto a finite subset of∂G (that
may depend ong).

If for instanceα is conjugationim bym ∈G, then∂α is simply left-translation bym, and∂α
has North–South dynamics for allm outside of a finite set of conjugacy classes (those consisting
of torsion elements), see [5,11,12].
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In general, we consider an outer automorphismΦ ∈OutG, viewed as a collection of ordinary
automorphismsα ∈ AutG. For a topological motivation, induceΦ by a continuous mapf :X→
X with π1X 'G. Automorphismsα ∈ Φ correspond to lifts off to the universal covering of
X . Different lifts may have very different properties. On the other hand, conjugate maps have
similar dynamical properties. This led Nielsen [18] to define lifts off to be isogredient if they
are conjugate by a covering transformation.

Going back to group automorphisms, we therefore defineα,β ∈ Φ to be isogredient if
β = ih ◦ α ◦ i−1

h for someh ∈G, with ih(g) = hgh−1 (the word “similar” was used in [9]).
We denoteS(Φ) the set of isogredience classes of automorphisms representingΦ. If Φ = 1,

thenS(Φ) may be identified to the set of conjugacy classes ofG modulo its center. We say
thats ∈ S(Φ) has North–South dynamics if automorphismsα ∈ s have North–South dynamics
on∂G.

THEOREM 0.1. –LetG be a hyperbolic group, andΦ ∈OutG. AssumeG is non-elementary
(i.e.G is not virtually cyclic).

(1) All but finitely manys ∈ S(Φ) have North–South dynamics.
(2) The setS(Φ) of isogredience classes is infinite.

Example0.2. – WhenΦ is induced by a pseudo-Anosov homeomorphismϕ of a closed
surfaceΣ , the “exceptional” automorphismsα ∈ Φ (those that do not have North–South
dynamics) correspond to lifts ofϕ having a fixed point in the universal covering ofΣ . The
set of exceptional classes inS(Φ) is in one-to-one correspondence with the set of fixed points
of ϕ. It may be empty, see [8] for an explicit example. On the other hand, the number of fixed
points ofϕk goes to infinity withk. Thus the number of exceptional isogredience classes cannot
be bounded in terms ofG only.

This example suggests the possibility of using exceptional isogredience classes to develop
a fixed point theory for general outer automorphisms of free groups. Exceptional isogredience
classes would be the algebraic analogue of Nielsen classes of fixed points, and there should be a
(rational) zeta function obtained as a sum over exceptional classes of powers ofΦ (compare [7]).

Example0.3. – SupposeG is free. It follows from [3, Lemma 5.1] that some power of
Φ contains an exceptional isogredience class. It may be shown using [4] and [14] that the
isogredience class ofα is the only exceptional class whenα is the irreducible automorphism
a 7→ abc, b 7→ bab, c 7→ cabc studied in [13].

The proof of the first assertion of Theorem 0.1 whenG is not free requires the following fact,
which is of independent interest:

PROPOSITION 0.4 (Quasiisometries of hyperbolic spaces have a quasi-fixed point or a quasi-
axis). –Let f be a(λ,C)-quasiisometry of aδ-hyperbolic proper geodesic metric space(E,d)
to itself. There existsM =M(δ, λ,C), independent ofE andf , with the following property: if
d(f(x), x)>M for all x ∈ E, then there exists a bi-infinite geodesicγ such that the Hausdorff
distance betweenγ andf(γ) is finite.

IncreasingM if necessary, we conclude (Corollary 1.4) that the action off on∂E has North–
South dynamics, with fixed points the two endpoints ofγ.

1. Quasiisometries of hyperbolic spaces

We start by proving Proposition 0.4. The proof may be seen as a generalization of the
well-known argument constructing the axis of an isometry of anR-tree having no fixed

4e SÉRIE– TOME 33 – 2000 –N◦ 4



AUTOMORPHISMS OF A HYPERBOLIC GROUP 509

points (see [17]). We refer the reader to [5,11,12,23] for basic facts about hyperbolic spaces,
quasiisometries, and hyperbolic groups.

Let (E,d) be a properδ-hyperbolic geodesic metric space. Properness is assumed mostly for
convenience, in particularE could be anR-tree in what follows.

Forx, y ∈ E, we denote[x, y] any geodesic segment fromx to y. Given a pointz, any point
p ∈ [x, y] that isδ-close to both segments[x, z] and[y, z] will be called a projection ofz onto
[x, y] (two projections are only a fewδ’s apart).

Recall thatf :E→E is a(λ,C)-quasiisometry if

1

λ
d(x, y)−C 6 d

(
f(x), f(y)

)
6 λd(x, y) +C

for all x, y ∈ E, and there existsg satisfying the same inequalities such thatf ◦ g andg ◦ f are
C-close to the identity. We let̀(f) = infx∈E d(f(x), x) be the minimum displacement off .
Note that̀ (g)6 λ`(f) + 2C.

The following lemma is left as an exercise.

LEMMA 1.1. –If f is a (λ,C)-quasiisometry of a compact interval to itself, then`(f)6C.

From now on, we fixδ, λ,C. The quantitiesC1,M1,C2 introduced below depend only on
these three numbers, not onE, f , or the points under consideration. We also say that two points
x, y are close, or have bounded distance, if their distance may be bounded a priori by some
number depending only onδ, λ,C.

The quasiisometryf has the following basic property: there existsC1 such that, for any
geodesic segment[x, y], the image of[x, y] is contained in theC1-neighborhood of[f(x), f(y)].

Consider a geodesic trianglea, f(a), f2(a). Letu be a projection ofa onto[f(a), f2(a)], and
v a projection off(u) onto [f(a), f2(a)].

LEMMA 1.2. –There existsM1 such that, if̀ (f)>M1, thenv ∈ [u, f2(a)].

Proof. –Supposev ∈ [f(a), u]. Sincef(v) is close to[f2(a), f(u)] andf(u) is close tov, the
point f2(u) is close to[f2(a), f(u)]. Thus, up to a bounded error, the pointsu andf2(u) both
lie on the segment[f2(a), f(u)]. It follows thatf or g is close to a map sending[u, f(u)] into
itself. Lemma 1.1 implies that some point of[u, f(u)] is close to its image byf . 2

We assume from now on that`(f)>M1.

LEMMA 1.3. –There existsC2 with the following property: for anya ∈ E, there exist three
pointsp, q, r, lying in this order on[a, f2(a)], such that

(1) q isC2-close to a projection off(a) onto [a, f2(a)];
(2) p isC2-close tog(q);
(3) r isC2-close tof(q).

Proof. –With the same notations as above, it follows from Lemma 1.2 thatu is close to
[f(a), f(u)]. Thereforeg(u) is close to[a,u]. We also know thatf(u) is close to[u, f2(a)]. Let
p, q, r be projections onto[a, f2(a)] of g(u), u, f(u) respectively. Either they are in the correct
ordera, p, q, r, f2(a), or this may be achieved by moving them by a bounded amount.2

Note thatf(q) is close to[f(p), f(r)], hence to[q, f2(q)].
We now complete the proof of Proposition 0.4. View Lemma 1.3 as a way of assigning a point

q to any pointa. We construct a sequenceqn by iterating this process, withq0 the point assigned
by Lemma 1.3 to an arbitrary starting pointa ∈E. Sincef(qn) is close to[qn, f2(qn)], the point
qn+1 is close tof(qn).
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510 G. LEVITT AND M. LUSTIG

Note that by constructionqn+1 ∈ [qn, f
2(qn)], while qn+2 is close tof(qn+1), hence to

[qn, f
2(qn)] by assertion (3) of Lemma 1.3. Thus the broken geodesicsγn = [qn, qn+1] ∪

[qn+1, qn+2] are uniformly quasigeodesic. Also note that by assertion (2) of Lemma 1.3 we have

d(qn, qn+1)> d
(
g(qn+1), qn+1

)
−C2 > `(g)−C2,

showing that the overlap betweenγn andγn+1 is bounded below by a linear function of`(f).
It follows from [5, Théorème 3.1.4] or [11, Théorème 5.25] that the sequenceqn is an infinite

quasigeodesicγ+ if `(f) is large enough. Sinced(f(qn), qn+1) is bounded, the point at infinity
of γ+ is fixed by∂f (the homeomorphism induced byf on ∂E). The quasigeodesic may be
extended in the other direction by applying the same construction tog, yielding a bi-infinite
quasigeodesic, hence a second fixed point for∂f . This proves Proposition 0.4.

COROLLARY 1.4. –Letf be a(λ,C)-quasiisometry of aδ-hyperbolic proper geodesic metric
space(E,d) to itself. There existsN =N(δ, λ,C), independent ofE andf , with the following
property: if d(f(x), x)>N for all x ∈E, then∂f has North–South dynamics.

Proof. –Supposè(f)>M . Letγ be a bi-infinite geodesic joining two fixed pointsX0,X1 of
∂f . ConsiderX 6=X0,X1 in ∂E. Let θ be a projection ofX ontoγ. A projectionθ′ of ∂f(X) is
close tof(θ). If `(f) is large enough, the distance fromθ to θ′ is bounded below and the oriented
segmentθθ′ always points towards the same endpointXi of γ, independently of the choice of
X . Applying this argument to bothf andg, we deduce that∂f has North–South dynamics.2

2. North–South dynamics

We first prove:

THEOREM 2.1. –Let Φ ∈ OutG, with G hyperbolic. All but finitely many isogredience
classess ∈ S(Φ) have North–South dynamics on∂G.

Proof. –LetE be the Cayley graph ofG with respect to some finite generating setA, with the
natural left-action ofG. We identify the set of vertices ofE with G, and∂E with ∂G. We fix a
“basepoint”α ∈ Φ, and we represent it by a quasiisometryJ :E→ E sending a vertexg to the
vertexα(g), equivariant in the sense thatα(h)J = Jh for everyh ∈G.

Givenβ ∈Φ, we writeβ = im ◦ α and we consider the mapJβ =mJ (this involves a choice
for m if the center ofG is not trivial). Note that it maps a vertexg onto mα(g) (not onto
β(g) =mα(g)m−1).

The mapJβ satisfiesβ(g)Jβ = Jβg, it induces∂β on ∂E (because a right-translation ofG
induces the identity on the boundary), and the mapsJβ are uniformly quasiisometric (because
they differ by left-translations).

If two mapsJβ , Jγ , with β, γ ∈ Φ, coincide at some point ofE, then clearlyβ = γ. More
generally:

LEMMA 2.2. –Letβ, γ ∈Φ. If there existg, h ∈G with

g−1Jβ(g) = h−1Jγ(h),

thenβ andγ are isogredient.

Proof. –Writing β = im ◦ α andγ = in ◦α we get

g−1mα(g) = h−1nα(h)
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which we rewrite as

nm−1 = hg−1mα
(
gh−1

)
m−1 = hg−1β

(
gh−1

)
,

showing thatγ = inm−1 ◦ β = ihg−1 ◦ β ◦ (ihg−1)−1 is isogredient toβ. 2
By Corollary 1.4, there exists a numberN (independent ofβ) such that, ifJβ moves every

point of E more thanN , then ∂β has North–South dynamics. SinceE is a locally finite
graph, Lemma 2.2 implies that this condition is fulfilled for allβ ∈ Φ outside of a finite set
of isogredience classes. This completes the proof of Theorem 2.1.2

Remark. – WhenG is a free groupFn, there is (using the notations of [4]) a one-to-one
correspondence betweenS(Φ) and the set of connected components of the graphD(ϕ), for
ϕ ∈Φ. In this case one may use Lemma 5.1 of [4] instead of Proposition 0.4 in the above proof.
Also note that, as a corollary of Theorem 4 of [9], the map∂β has at most4 fixed points for
β ∈ Φ outside of at most4n− 4 isogredience classes. Another remark:S(Φ) is infinite when
Φ ∈OutFn fixes a nontrivial conjugacy class, by Proposition 5.4 of [4].

PROPOSITION 2.3. –Suppose∂α has North–South dynamics, with attracting fixed pointX+

and repelling fixed pointX−. Then:
(1) The subgroupP (α)⊂G consisting of allα-periodic elements is either finite or virtually

Z with limit set{X+,X−}.
(2) If g ∈G is notα-periodic, thenlimn→+∞α

±n(g) =X±.

Proof. –Given g ∈ G of infinite order, we denoteg±∞ = limn→+∞ g
±n. These are distinct

points of ∂G. Note that∂α(g±∞) = α(g)±∞. The subgroup ofG consisting of elements
whose action on∂G leaves{g∞, g−∞} invariant is the maximal virtually cyclic subgroupNg
containingg. If h /∈Ng, then{g∞, g−∞} is disjoint from its image byh. If ∂α(g∞) = g∞, then
Ng is α-invariant (i.e.α(Ng) =Ng).

Suppose (1) is false. Then there exist twoα-periodic elementsg, h of infinite order generating
a non-elementary group. The pointsg±∞ andh±∞ are four distinct periodic points of∂α, a
contradiction.

To prove (2), first supposeG is virtually cyclic. ThenG maps ontoZ or Z/2Z ∗ Z/2Z with
finite kernel (see [21]). From this one deduces that the periodic subgroupP (α) has index at
most 2 and contains all elements of infinite order (an instructive example is conjugation byab in
〈a, b | a2 = b2 = 1〉). Both ends ofG are fixed by∂α; all non-periodic torsion elements (if any)
converge towards one end under iteration ofα, towards the other end under iteration ofα−1.

Now consider the general case. It suffices to showlimn→+∞α
n(g) = X+. SinceX+ is a

fixed point of∂α, we are free to replaceα by a power if needed. We first note that there exists a
numberC such that (

g, g∞
)
> 1

2
|g| −C

for everyg of infinite order (where( , ) denotes Gromov’s scalar product based at the identity
in the Cayley graph, and| | is word length). This follows easily from Lemma 3.5 of [20] (ifG is
free andA is a basis,C =−1/2 clearly works).

Supposeg is notα-periodic. Thenlimn→∞ |αn(g)|=∞. If furthermoreg has infinite order,
applying the previous inequality toαn(g) yields

lim
n→+∞

αn(g) = lim
n→+∞

(
αn(g)

)∞
= lim
n→+∞

∂αn
(
g∞
)

=X+

(note thatg∞ 6=X−, since otherwiseN(g) would beα-invariant andg would be periodic).
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Now we consider a nonα-periodic elementg of finite order. We distinguish two cases. Suppose
first that{X+,X−} is the limit set of an infiniteα-invariant virtually cyclic subgroupH . We
may assume thatH is maximal (it then contains all periodic elements). Ifg /∈H , chooseh ∈H
of infinite order, withh±∞ =X±. Replacingα by a power, we may assumeα(h) = h. We have
gh∞ 6= h−∞, and thereforegk = hkghk has infinite order fork large enough. Sinceαn(gk)
converges toX+ asn→+∞, we find thatαn(g) converges toh−kX+ =X+, as desired. There
remains to rule out the possibility that non-periodic torsion elementsg ∈H converge towards
X− under iteration ofα. If this happens, choosej /∈H . Sincej andgj are notα-periodic (they
don’t belong toH), we know thatαn(j) andαn(gj) are close toX+ for n large. Butαn(g) and
αn(g−1) are close toX−. This is impossible.

If {X+,X−} is not as above, thenX+ (respectivelyX−) is an attracting (respectively
repelling) fixed point for the action ofα ∪ ∂α on the compact spaceG ∪ ∂G (see [14]). The
desired resultlimn→+∞α

n(g) =X+ follows from an elementary dynamical argument. Indeed,
the sequenceαn(g), with n > 0, has some limit pointX ∈ ∂G. We haveX 6=X− becauseX−

is repelling onG ∪ ∂G, and therefore∂αn(X) converges toX+. We then deduce thatX+ is
a limit point of αn(g), and finally thatαn(g) converges toX+ becauseX+ is attracting on
G∪ ∂G. 2

3. Isogredience classes

The main result of this section is the infiniteness ofS(Φ) (but see also Proposition 3.7). We
first study four different situations where we can reach this conclusion. For now, we only assume
thatG is any finitely generated group. We fixΦ ∈OutG andα ∈Φ.
• By definition, the automorphismsβ = im ◦ α andγ = in ◦ α are isogredient if and only if

there existsg ∈ G with γ = ig ◦ β ◦ i−1
g , or equivalentlyn = gmα(g−1)c with c in the center

of G. Though we will not use it, we note thatS(Φ) is infinite if the center ofG is finite and the
action ofΦ onH1(G;R) has1 as an eigenvalue.

Now assume thatΦ preserves someR-tree (see [6], [17], [22] for basics aboutR-trees). This
means that there is anR-treeT equipped with an isometric action ofG whose length function
satisfies̀ ◦Φ = λ` for someλ> 1. We always assume that the action is minimal and irreducible
(no global fixed point, no invariant line, no invariant end). We sayg ∈ G is hyperbolic if it is
hyperbolic as an isometry ofT . We shall use the following fact due to Paulin [19]: any segment
[a, b]⊂ T is contained in the axis of some hyperbolicg ∈G.

Becausè ◦Φ = λ`, it follows from [6] (see also [9], [16]) that, givenα ∈Φ, there is a (unique)
mapH =Hα :T → T with the following properties:H is a homothety with stretching factorλ
(i.e. d(Hx,Hy) = λd(x, y)), and it satisfiesα(g)H =Hg for everyg ∈G. If β = im ◦ α, then
Hβ =mHα. If β = ig ◦ α ◦ i−1

g is isogredient toα, thenHβ = gHαg
−1 is conjugate toHα.

• First consider the case whenλ= 1. In this case the translation length of the isometryHβ is
an isogredience invariant ofβ and we easily get:

PROPOSITION 3.1. –Supposè◦Φ = `, wherè is the length function of an irreducible action
ofG on anR-tree. ThenS(Φ) is infinite.

Proof. –Fix α ∈ Φ. Using Paulin’s lemma, it is easy to constructm ∈ G with the translation
length of mHα arbitrarily large. The corresponding automorphismsim ◦ α are in distinct
isogredience classes.2
• The caseλ > 1 is harder.

PROPOSITION 3.2. –Supposè ◦ Φ = λ`, whereλ > 1 and ` is the length function of an
irreducible action ofG on anR-treeT . Assume that arc stabilizers are finite, and there exists
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N0 ∈N such that, for everyQ ∈ T , the action ofStabQ onπ0(T \ {Q}) has at mostN0 orbits.
ThenS(Φ) is infinite.

An arc stabilizer is the pointwise stabilizer of a nondegenerate segment[a, b], andStabQ
denotes the stabilizer ofQ.

Proof. –Fix α ∈ Φ and considerH = Hα. We choose a pointP ∈ T as follows. It is the
unique fixed point ofH if H has a fixed point inT . OtherwiseH has a unique fixed pointQ
in the metric completionT of T , and a unique eigenrayρ (by definition,ρ is the image of an
isometric embeddingρ : (0,∞)→ T such thatHρ(t) = ρ(λt) for all t > 0, see [9]). We letP be
any point onρ. In both casesP ∈ [H−1P,HP ].

For further reference, we note that the stabilizer of any initial segmentρ(0, t) of an eigenray
is the same as the stabilizer of the whole eigenray, becauseStabρ(0, t) and Stabρ(0, λt) =
α(Stabρ(0, t)) are finite groups with the same order. Suppose furthermore thatH has two
eigenraysρ, ρ′, andg ∈ G maps an initial segment ofρ onto an initial segment ofρ′. From
the basic equationα(g)H =Hg it follows thatg−1α(g) fixes an initial segment ofρ, hence all
of ρ, and we deduce thatg maps thewholeof ρ ontoρ′.

Returning to the main line of proof, we want to findv,w ∈ G generating a free subgroup of
rank2, such that:

(i) vP andwP belong to a componentT+ of T \ {P}.
(ii) v−1P andw−1P belong to another componentT−.
(iii) If HP 6= P , thenH±1P ∈ T±.
(iv) If HP = P , thenH(T+) 6= T−.
Note that these conditions forcev andw to be hyperbolic, with axes intersecting in a non-

degenerate segment containingP in its interior. Furthermore, the two axes induce the same
orientation on their intersection.

It is easy to constructv,w using Lemma 2.6 of [6] and Paulin’s lemma, except in one “bad”
situation where (iv) cannot be achieved:HP = P , andT \ {P} has exactly two components,
which are permuted byH .

If H is bad, we have to change our initial choice ofα ∈Φ. We use the following observation.
SupposeH1,H2 are homotheties with the same dilation factorλ > 1 and distinct fixed points
P1, P2; if H1 (respectivelyH2) does not send the component ofT \{P1} (respectivelyT \{P2})
containingP2 (respectivelyP1) into itself, thenH2H

−1
1 is a hyperbolic isometry whose axis

contains[P1, P2].
We choosem ∈G acting onT as a hyperbolic isometry with axis not containingP , and we

replaceα byα′ = im ◦α. LetH ′ =mH =Hα′ . We claim thatH ′ cannot be bad (with respect to
its fixed pointP ′). Indeed, this follows from the above observation because the axis ofH ′H−1

does not containP . Thus, whenH is bad, we can findv,w satisfying the above conditions with
respect toH ′. For simplicity, we keep writingH,α rather thanH ′, α′.

Now assume by way of contradiction that there are onlyK isogredience classes inS(Φ).
Given an integerp, consider the setW consisting of words in the lettersv,w containing each
letter exactlyp times (we do not usev−1 orw−1). We fix p such thatW has more thanKs2N0

elements, wheres is the order of the stabilizer of the arcI = [P, vP ]∩ [P,wP ] andN0 is defined
in the statement of Proposition 3.2. We will consider the automorphismsiσ ◦ α, for σ ∈W , and
the corresponding homothetiesσH .

Considerσ = u1 . . .u2p ∈W , with eachui equal tov orw. The elementsv,w were chosen in
such a way that the points

P,u1P,u1u2P, . . . , u1 . . . u2pP,u1 . . . u2pHP = σHP
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all lie in this order on the segment[P,σHP ] (with the last two points possibly equal). SinceP
belongs to the axis of bothv andw, we find that, for anyσ ∈W , the length of[P,σHP ] equals

L= p`(v) + p`(w) + d(P,HP )

independently ofσ. We also observe that, ifσ, τ ∈W , then[P,σHP ] ∩ [P, τHP ] contains the
segmentI = [P, vP ]∩ [P,wP ].

Furthermore the intersection[P,σHP ]∩ [σHP, (σH)2P ] consists only ofσHP : this follows
from P ∈ [u−1

2p P,Hu1P ] if HP = P , from P ∈ [H−1P,u1P ] if HP 6= P . This implies that
[P,σHP ] is contained in an eigenrayρσ of the homothetyσH . LetQσ denote the fixed point of
σH in the completionT (the origin ofρσ).

Now we remark that[P,σHP ] is the only fundamental domain of lengthL for the action of
σH on its eigenrayρσ. In particular,d(Qσ, P ) = L

λ−1 is independent ofσ ∈W .
Suppose for a moment that for everyσ ∈W the mapσH has only one eigenray (this happens

in particular ifQσ ∈ T \ T ). If ic conjugatesiσ ◦ α andiτ ◦ α (with σ, τ ∈W andc ∈G), then
c conjugatesσH andτH . Thereforec sendsρσ ontoρτ , and the fundamental domain[P,σHP ]
onto [P, τHP ]. Since these segments both containI, we find c ∈ Stab I. This contradicts the
choice ofp in this special case, since we obtain|W |/s distinct isogredience classes inS(Φ).

In general, ific conjugatesiσ ◦ α andiτ ◦ α, we can only say thatc sendsQσ to Qτ . Since
|W |>Ks2N0, we can find distinct elementsσ, τ(1), . . . , τ(s2 + 1) in W such that someic(j)
conjugatesiσ ◦α andiτ(j) ◦α, and some elementh(j) ∈ StabQτ(j) sends an initial segment of
the [τ(j)H ]-eigenrayc(j)ρσ onto an initial segment ofρτ(j).

We have pointed out earlier thath(j) sends the whole eigenrayc(j)ρσ ontoρτ(j). Therefore
h(j)c(j) ∈ Stab I. Thus there are at leasts+ 1 values ofj for which the mapsτ(j)H have a
common eigenray containingI. This is a contradiction because at mosts elements ofG can have
the same action onI. This completes the proof of Proposition 3.2.2
•We also need:

PROPOSITION 3.3. –S(Φ) is infinite if G is hyperbolic, non-elementary, andΦ has finite
order in OutG.

Proof. –Let J be the subgroup of AutG consisting of all automorphisms whose image in
OutG is a power ofΦ. The exact sequence{1}→K→ J → 〈Φ〉 → {1}, with K =G/Center
and 〈Φ〉 finite, shows thatJ is hyperbolic, non-elementary. The set of automorphismsα ∈ Φ
is a coset ofJ mod K . If α,β ∈ Φ are isogredient, they are conjugate inJ . The proof of
Proposition 3.3 is therefore concluded by applying the following fact, due to T. Delzant.2

LEMMA 3.4. –Let J be a non-elementary hyperbolic group. LetK be a normal subgroup
with abelian quotient. Every coset ofJ modK contains infinitely many conjugacy classes.

Proof. –Fix u in the cosetC under consideration. Suppose for a moment that we can find
c, d ∈K , generating a free group of rank 2, such thatuc∞ 6= c−∞ andud∞ 6= d−∞ (recall that
we denoteg±∞ = limn→+∞ g

±n for g of infinite order). Considerxk = ckuck andyk = dkudk.
For k large, the above inequalities imply that these two elements have infinite order, and do not
generate a virtually cyclic group becausex±∞k (respectivelyy±∞k ) is close toc±∞ (respectively
d±∞). Fix k, and consider the elementszn = xn+1

k y−nk . They belong to the cosetC, because
J/K is abelian, and their stable norm goes to infinity withn. ThereforeC contains infinitely
many conjugacy classes.

Let us now constructc, d as above. Choosea, b ∈ K generating a free group of rank 2. We
first explain how to getc. There is a problem only ifua∞ = a−∞ andub∞ = b−∞. In that case
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there exist integersp, q with uapu−1 = a−p andubqu−1 = b−q. We takec= apbq, noting that
ucu−1 = a−pb−q is different fromc−1 = b−qa−p.

Once we havec, we choosec′ ∈K with 〈c, c′〉 free of rank 2, and we obtaind by applying the
preceding argument usingc′ andcc′ instead ofa andb. The group〈c, d〉 is free of rank 2 because
d is a positive word inc′ andcc′. 2

Remark. – As pointed out by Delzant, similar arguments show thatS(Φ) is infinite whenΦ
has infinite order but is hyperbolic in the sense of [1] (becauseJ is hyperbolic, see [1]).

We can now prove:

THEOREM 3.5. –For everyΦ ∈ OutG, with G a non-elementary hyperbolic group, the set
S(Φ) is infinite.

Proof. –By Proposition 3.3, we may assume thatΦ has infinite order. By Paulin’s theo-
rem [20], it preserves someR-treeT with a nontrivial minimal small action ofG (recall that
an action ofG is small if all arc stabilizers are virtually cyclic; the action ofG on T is always
irreducible).

If λ = 1, we use Proposition 3.1. Ifλ > 1, we apply Proposition 3.2. The existence ofN0

follows from work of Bestvina and Feighn [2] (alternatively, one could forG torsion-free use ad
hoc trees as in [15]). Finiteness of arc stabilizers is stated as the next lemma.2

LEMMA 3.6. –Supposè ◦Φ = λ`, where` is the length function of a nontrivial small action
of a hyperbolic groupG on anR-treeT . If λ > 1, thenT has finite arc stabilizers.

Proof. –This is proved in [9, Lemma 2.8] whenG is free. We sketch the proof of the general
case. We may assume that the action is minimal. Letc⊂ T be an arc with infinite stabilizerS.
Let p be the index ofS in the maximal virtually cyclic subgroupS that contains it. Fixα ∈ Φ,
and denote byH the associated homothety ofT .

Since there is a finite union of arcs whose union meets every orbit, we can find, fork large,
disjoint subarcsc0, . . . , cp of Hk(c) such thatci = vic0 for somevi ∈ G. For eachi, the
stabilizer ofci lies betweenαk(S) = StabHk(c) andαk(S). From Stab ci = viStab c0v

−1
i

we getαk(S) = viα
k(S)v−1

i , hencevi ∈ αk(S). This is a contradiction since1, v1, . . . , vp all lie
in different cosets ofαk(S) moduloαk(S). 2

If G is a free groupFn, we also prove:

PROPOSITION 3.7. –There exists a numberCn such that, for anyΦ ∈OutFn and any integer
k > 2, the natural mapS(Φ)→S(Φk) is at mostCn-to-one.

Proof. –Let αi (1 6 i 6 N ) be pairwise non-isogredient automorphisms inΦ having
isogredientkth powers. We want to boundN in terms ofn only. We may assume thatαki is
a fixed automorphismβ.

Let T be anR-tree with trivial arc stabilizers preserved byΦ (see [9, Theorem 2.1]), andHi

the homothety associated toαi. TheHi’s all have the samekth powerHβ . For i 6= j, we have
Hi = gijHj for some nontrivialgij ∈ Fn. Note thatHi andHj cannot coincide on more than
one point sinceFn acts onT with trivial arc stabilizers.

First supposeλ > 1. ThenHβ and all mapsHi fix the same pointQ ∈ T . The stabilizer
StabQ⊂ Fn is αi-invariant and has rank< n by [10] (see [9]).

If StabQ is trivial (in particular ifQ ∈ T \ T ), thengij = 1 andαi = αj .
If StabQ has rank> 2, we use induction onn since the restrictions of theαi’s to StabQ are

non-isogredient automorphisms representing the same outer automorphism [9, Lemma 5.1].
If StabQ is cyclic, generated by someu, we note thatgij is a power ofu andαi(u) is

independent ofi. If αi(u) = u, thenHi commutes withu andHk
i = Hk

j implies gij = 1. If
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αi(u) = u−1, we writeu2p = upαi(u
p)−1, showing thatαi is isogredient toαj whenevergij is

an even power ofu.
Now supposeλ= 1. If Hβ has no fixed point, thenN = 1 since allHi’s coincide on the axis

of Hβ . Assume therefore thatHβ has fixed points. If all mapsHi have a common fixed pointQ,
we can argue as above. We complete the proof by showing how to reduce to this situation.

LetQi be a fixed point ofHi, andei some edge containingQi and fixed byHβ . The action of
Fn on pairs(Qi, ei) has at most6n− 6 orbits (twice the number of edges of the quotient graph
T/Fn). After possibly dividingN by 6n− 6 we may assume there is only one orbit. Note that
the action onT of the elementcij ∈ Fn sending(Qi, ei) to (Qj , ej) commutes withHβ since
ei andej are both fixed byHβ . This implies thatβ fixes cij , and we can changeαi within its
isogredience class so as to make all pointsQi the same, while retaining the propertyαki = β. 2
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