
The Boundary at In�nity of the Curve Complex and the RelativeTeichm�uller SpaceErica KlarreichFebruary 11, 1999AbstractIn this paper we study the boundary at in�nity of the curve complex C(S) of a surface Sof �nite type and the relative Teichm�uller space Tel(S) obtained from the Teichm�uller space bycollapsing each region where a simple closed curve is short to be a set of diameter 1. C(S) andTel(S) are quasi-isometric, and Masur-Minsky have shown that C(S) and Tel(S) are hyperbolicin the sense of Gromov. We show that the boundary at in�nity of C(S) and Tel(S) is the spaceof topological equivalence classes of minimal foliations on S.1 IntroductionThere is a strong but limited analogy between the geometry of the Teichm�uller space T (S) of asurface S and that of hyperbolic spaces. Teichm�uller space has many of the large-scale qualities ofhyperbolic space, and in fact the Teichm�uller space of the torus isH2. At one point it was generallybelieved that the Teichm�uller metric was negatively curved; however, Masur ([13]) showed that thisis not so, apart from a few exceptional cases. Since then, Masur and Wolf ([15]) showed that T (S)is not even hyperbolic in the sense of Gromov.One way in which T (S) di�ers from hyperbolic space is that it does not have a canonicalcompacti�cation. A Gromov hyperbolic space has a boundary at in�nity that is natural in thefollowing two senses, among others: the boundary consists of all endpoints of quasigeodesic rays upto equivalence (two rays are equivalent if they stay a bounded distance from each other), and everyisometry of the space extends continuously to a homeomorphism of the boundary. Teichm�uller spacecannot be equipped with such a compacti�cation but rather gives rise to several compacti�cations,each with advantages and drawbacks.Questions about the boundary of a hyperbolic space are interesting for many reasons; one isthat they tie in to questions of rigidity of group actions by isometry on the space. For example,in the proof of Mostow's Rigidity Theorem, a key step in showing that two hyperbolic structureson the same compact 3-manifold are isometric is to show that a quasi-isometry between the twostructures lifts to a map of H3 that extends continuously to @1H3 (the Riemann sphere), and thento gain some control over the map on @1H3. In another instance, Sullivan's Rigidity Theoremgives geometric information about a hyperbolic 3-manifold based on quasi-conformal informationabout its associated group action on @1H3.Although Teichm�uller space is not hyperbolic, it is natural to be interested in boundaries ofTeichm�uller space, since they have a strong connection to deformation spaces of hyperbolic 3-manifolds. If M is a compact 3-manifold, there is a well-known parametrization of the space of1



geometrically �nite hyperbolic structures on int(M) by the Teichm�uller space of the boundaryof M ; see [1]. One question is to understand the behavior of the hyperbolic structure on M asthe Riemann surface structure on @M \degenerates", that is, goes to in�nity in the Teichm�ullerspace. More generally, an important problem in the theory is to describe all geometrically in�nitehyperbolic structures on M ; for this purpose Thurston has introduced an invariant called theending lamination of @M , intended to play a similar role to that of the Teichm�uller space of@M in the geometrically �nite setting. Two important boundaries of T (S) by Teichm�uller andThurston involve compactifying T (S) by the measured foliation space, or equivalently the measuredlamination space, which is related to but not the same as the space of possible ending laminationson S.Masur and Minsky ([14]) have shown that although Teichm�uller space is not Gromov hyperbolic,it is relatively hyperbolic with respect to a certain collection of closed subsets. In this paper wedescribe the boundary at in�nity of the relative Teichm�uller space and a closely related object,the curve complex. If � is a homotopy class of simple closed curves on S, a surface of �nite type,let Thin� denote the region of T (S) where the extremal length of � is less than or equal to �,for some �xed small � > 0. These regions play a role somewhat similar to that of horoballs inhyperbolic space; in fact for the torus, these regions are actual horoballs in H2. However, Minskyhas shown ([17]) that in general the geometry of each region Thin� is not hyperbolic, but ratherhas the large-scale geometry of a product space with the sup metric. On the other hand, theseregions are in a sense the only obstacle to hyperbolicity: Masur and Minsky ([14]) have shown thatTeichm�uller space is relatively hyperbolic with respect to the family of regions fThin�g. In otherwords, the electric Teichm�uller space Tel(S) obtained from T (S) by collapsing each region Thin�to diameter 1 is Gromov hyperbolic (this collapsing is done by adding a point for each set Thin�that is distance 12 from each point in Thin�).Since Tel(S) is Gromov hyperbolic, it can be equipped with a boundary at in�nity @1Tel(S).Our main result is the following:Theorem 1.1 The boundary at in�nity of Tel(S) is homeomorphic to the space of minimal topo-logical foliations on S.A foliation is minimal if no trajectory is a simple closed curve. This space of minimal foliationsis exactly the space of possible ending laminations (or foliations) on a surface S that correspondsto a geometrically in�nite end of a hyperbolic manifold that has no parabolics (see [23]). Here thetopology on the space of minimal foliations is that obtained from the measured foliation space byforgetting the measures. This topology is Hausdor� (see the appendix), unlike the topology on thefull space of topological foliations; hence we may prove Theorem 1.1 using sequential arguments toestablish continuity.We will prove Theorem 1.1 by showing that the inclusion of T (S) in Tel(S) extends continuouslyto a portion of the Teichm�uller compacti�cation of T (S) by the projective measured foliation spacePMF(S): 2



Theorem 1.2 The inclusion map from T (S) to Tel(S) extends continuously to the portion PMFmin(S)of PMF (S) consisting of minimal foliations, to give a map � : PMFmin(S) ! @1Tel(S). Themap � is surjective, and �(F) = �(G) if and only if F and G are topologically equivalent. Moreover,any sequence fxng in T (S) that converges to a point in PMF (S)nPMFmin(S) cannot accumulatein the electric space onto any portion of @1Tel(S).If Fmin(S) is the space of minimal topological foliations on S, the map � : PMFmin(S) !@1Tel(S) descends to a homeomorphism from Fmin(S) to @1Tel(S); hence Theorem 1.1 is a con-sequence of Theorem 1.2.Another space that we can associate to S that has a close connection to the electric Teichm�ullerspace is the curve complex C(S), originally described by Harvey in [10]. C(S) is a simplicial complexwhose vertices are homotopy classes of non-peripheral simple closed curves on S. A collection ofcurves forms a simplex if all the curves may be simultaneously realized so that they are pairwisedisjoint (when S is the torus, once-punctured torus or four-punctured sphere it is appropriate tomake a slightly di�erent de�nition; see Section 4). C(S) can be given a metric structure by assigningto each simplex the geometry of a regular Euclidean simplex whose edges have length 1.In the construction of the electric Teichm�uller space, if the value of � used to de�ne the setsThin� is su�ciently small, then Thin� and Thin� intersect exactly when � and � have disjointrealizations on S, that is, when the elements � and � of C(S) are connected by an edge. Hence the1-skeleton C1(S) of C(S) describes the intersection pattern of the sets Thin�; C1(S) is the nerveof the collection fThin�g. The relationship between Tel(S) and C(S) is not purely topological.Masur and Minsky have shown ([14]) that Tel(S) is quasi-isometric to C1(S) and C(S). This impliesthat C1(S) and C(S) are also Gromov hyperbolic (although in the proof if Masur and Minsky, theimplication goes in the other direction). Two Gromov hyperbolic spaces that are quasi-isometrichave the same boundary at in�nity, so a consequence of Theorem 1.1 is the following:Theorem 1.3 The boundary at in�nity of the curve complex C(S) is the space of minimal foliationson S.As with Teichm�uller space, the curve complex is important in the study of hyperbolic 3-manifolds. Let M be a compact 3-manifold whose interior admits a complete hyperbolic structure,and suppose S is a component of @M that corresponds to a geometrically in�nite end e of M .Thurston, Bonahon and Canary ([25, 2, 3]) have shown that there is a sequence of simple closedcurves �n 2 C1(S) whose geodesic representatives in M \exit the end e", that is, are containedin smaller and smaller neighborhoods of S in M . Further, they showed that every such sequenceconverges to a unique geodesic lamination (equivalently, foliation) on S. In the case when thehyperbolic structure on int(M) has a uniform lower bound on injectivity radius, Minsky has shown([20, 22]) that the sequence f�ng is a quasigeodesic in C1(S); a form of this was a key step in his3



proof of the Ending Lamination Conjecture for such manifolds, giving quasi-isometric control ofthe ends of M .Since the sequence f�ng is a quasigeodesic in C1(S), it must converge to a point F in theboundary at in�nity of C1(S), which we have described as the space of minimal foliations (orlaminations) on S. We will show that this description is natural, so that in particular when thesequence f�ng in C1(S) arises as described above in the context of hyperbolic 3-manifolds, theboundary point F is the ending lamination.Theorem 1.4 Let f�ng be a sequence of elements of C1(S) that converges to a foliation F in theboundary at in�nity of C(S). Then regarding the curves �n as elements of the projective measuredfoliation space PMF (S), every accumulation point of f�ng in PMF(S) is topologically equivalentto F .It is interesting to note that our description of the boundary of C(S) ultimately does not dependon our original choice of a Teichm�uller compacti�cation for T (S), even though the Teichm�ullerboundary of T (S) depends heavily on an initial choice of basepoint in T (S) (see Section 2 for moredetails). Kerckho� has shown (see [12]) that the action of the modular group by isometry on T (S)does not extend continuously to the Teichm�uller boundary; on the other hand, the natural actionsof the modular group on Tel(S) and C(S) do extend to the boundary at in�nity, since this is true ofany action by isometry on a Gromov hyperbolic space. Hence the collapse used in the constructionof Tel(S) essentially \collapses" the discontinuity of the modular group action.In Section 2 we will give an overview of some of the basic theory of Teichm�uller space andquadratic di�erentials. Section 3 contains the essential ideas of Gromov hyperbolicity that we willneed. In Section 4 we discuss in more detail Masur and Minsky's work on the electric Teichm�ullerspace and the curve complex, and describe the quasi-isometry between them. In Section 5 weestablish some facts about convergence properties of sequences of Teichm�uller geodesics, which areused in Section 6 to prove the main theorems.Acknowledgments. The author would like to thank Dick Canary and Yair Minsky for interestingconversations, and Howard Masur for suggesting a portion of the argument for Proposition 5.1.2 Quadratic Di�erentials and the Teichm�uller Compacti�cation ofTeichm�uller SpaceLet S be a surface of �nite genus and �nitely many punctures. The Teichm�uller space T (S) is thespace of all equivalence classes of conformal structures of �nite type on S, where two conformalstructures are equivalent if there is a conformal homeomorphism of one to the other that is isotopicto the identity on S. A conformal structure is of �nite type if every puncture has a neighborhood4



that is conformally equivalent to a punctured disk. The Teichm�uller distance between two points� and � 2 T (S) is de�ned by d(�; �) = 12 logK(�; �);where K(�; �) is the minimal quasiconformal dilatation of any homeomorphism from a representa-tive of � to a representative of � in the correct homotopy class. The extremal map from � to �may be constructed explicity using quadratic di�erentials.A holomorphic quadratic di�erential q on a Riemann surface � is a tensor of the form q(z)dz2in local coordinates, where q(z) is holomorphic. We de�nekqk = Z ZS jq(z)jdxdy:Let DQ(�) denote the open unit ball in the space Q(�) of quadratic di�erentials on �, and SQ(�)the unit sphere.Every q 2 DQ(�) determines a Beltrami di�erential kqk qjqj on �, which in turn determines aquasiconformal map from � to a new element �q of T (S); this map is the Teichm�uller extremal mapbetween � and �q. The map that sends q to �q is a homeomorphism, giving an embedding of T (S)in Q(�); SQ(�) is the boundary of T (S) in Q(�), and T (S) [ SQ(�) gives a compacti�cation ofT (S) which we will denote T (S), called the Teichm�uller compacti�cation of T (S).Any q 2 Q(�) determines a pairHq and Vq of measured foliations on S called the horizontal andvertical foliations. Measured foliations are equivalence classes of foliations of S with 3- or higher-pronged saddle singularities, equipped with transverse measures; the equivalence is by measure-preserving isotopy and Whitehead moves (that collapse singularities). We will denote the measuredfoliation space by MF(S) and the projectivized measured foliation space (obtained by scaling themeasures) by PMF (S). The horizontal and vertical foliations associated to q give a metric on Sin the conformal class of � that is Euclidean away from the singularities. The map from SQ(�) toPMF(S) de�ned by sending q to the projective class of its vertical foliation is a homeomorphism,so that we may think of PMF(S) as the boundary of T (S) (see [11]).A unit-norm quadratic di�erential q on � determines a directed geodesic line in T (S) as follows:for 0 � k < 1, let �k denote the element of T (S) determined by the quasiconformal homeomorphismgiven by the quadratic di�erential k � q. Geometrically, the extremal map from � to �k is obtainedby contracting the transverse measure of Hq by a factor of K� 12 and expanding the transversemeasure of Vq by K 12 , where K = 1+k1�k ; note that the extremal map is K-quasiconformal. Thefamily f�k : 0 � k < 1g, when parametrized by Teichm�uller arclength, gives a Teichm�uller geodesicray; the family f�k : �1 < k < 1g determines a complete geodesic line. Every ray and line through� is so determined. We may think of the Teichm�uller ray f�k : 0 � k < 1g as terminating at theboundary point q 2 SQ(�), or equivalently, at the projective foliation Vq 2 PMF (S). Similarly,every pair of foliations in PMF(S) that �lls up S (see the next section for the de�nition of �lling5



up) determines a geodesic line in T (S), for which if � 2 L then the quadratic di�erential on � thatdetermines L has the two foliations as its horizontal and vertical foliations.The compacti�cation of T (S) by endpoints of geodesic rays depends in a fundamental wayon the choice of basepoint � in T (S). Kerckho� has shown (see [12]) that there exist projectivefoliations F 2 PMF(S) such that there are choices of � 2 T (S) for which the Teichm�uller rayfrom � determined by F does not converge in T (S) to F , but rather accumulates onto a portionof PMF(S) consisting of projective foliations that are topologically equivalent but not measureequivalent to F .Intersection number. If � is a simple closed curve on S then � determines a foliation on S (whichwe will also call �) whose non-singular leaves are all freely homotopic to �. The non-singular leavesform a cylinder, and S is obtained by gluing the boundary curves in some preassigned manner.There is a one-to-one correspondence between transverse measures on � and positive real numbers:each measure corresponds to the height of the cylinder, that is, the minimal transverse measureof all arcs connecting the two boundary curves of the cylinder. If a measure has height c, we willdenote the measured foliation by c ��. We de�ne the intersection number of the foliations c �� andk � � by i(c � �; k � �) = ck � i(�; �)where the right-hand intersection number is just the geometric intersection number of the simpleclosed curves � and � (that is, the minimal number of crossings of any pair of representatives of �and �. Thurston has shown that the collection fc � � : � a simple closed curve, c 2 R+g is densein MF(S), and that the intersection number extends continuously to a function i : MF(S) �MF(S)! R (see for instance [7]).Note that although the intersection number of two projective measured foliations is not well-de�ned, it still makes sense to ask whether two projective measured foliations have zero or non-zerointersection number.A foliation F is minimal if no leaves of F are simple closed curves. We say that two measuredfoliations are topologically equivalent if the topological foliations obtained by forgetting the mea-sures are equivalent with respect to isotopy and Whitehead moves that collapse the singularities.Rees ([24]) has shown the following:Proposition 2.1 If F is minimal then i(F ;G) = 0 if and only if F and G are topologically equiv-alent.We say that two foliations F and G �ll up S if for every foliation H 2MF(S), H has non-zerointersection number with at least one of F and G. A consequence of Proposition 2.1 is that if F isminimal, then whenever G is not topologically equivalent to F , F and G �ll up S.Let Fmin(S) denote the space of minimal topological foliations, with topology obtained from thespace PMFmin(S) of minimal projective measured foliations by forgetting the measures. Our goal6



is to show that Fmin(S) is homeomorphic to the boundary at in�nity of the electric Teichm�ullerspace. We will use sequential arguments to show that certain maps are continuous, so it is necessaryto show the following, whose proof can be found in the appendix:Proposition 2.2 The space Fmin(S) is Hausdor� and �rst countable.Note: The entire space F(S) of topological foliations on S is not Hausdor�. If � and � are twodistinct homotopy classes of simple closed curves that can be realized disjointly on S, then regardedas topological foliations, � and � do not have disjoint neighborhoods; every neighborhood of � or� must contain the topological foliation containing both � and �, and whose non-singular leavesare all homotopic to � or �.Extremal length. If 
 is a free homotopy class of simple closed curves on S, an importantconformal invariant is the extremal length of 
, which is de�ned as follows:De�nition 2.3 Let � 2 T (S), and let 
 be a homotopy class of simple closed curves on S. Theextremal length of 
 on �, written ext�(
), is de�ned by sup� (l�(
))2A� , where � ranges over all metricsin the conformal class of �, A� denotes the area of S with respect to �, and l�(
) is the in�mum ofthe length of all representatives of 
 with respect to �.Extremal length may be extended to scalar multiples of simple closed curves by ext(k�
) = k2ext(
),and extends continuously to the space of measured foliations.Our goal is to describe the boundary of the relative Teichm�uller space Tel(S) obtained from T (S)by collapsing each of the regions Thin
 of T (S) to be a set of bounded diameter, where Thin
 isthe region of T (S) where the simple closed curve 
 has short extremal length. We will need thefollowing lemma, which gives a connection between extremal length and intersection number (seefor instance [21] Lemma 3.1-3.2 for a proof):Proposition 2.4 Let q be a quadratic di�erential with norm less than 1 on � 2 T (S) with hori-zontal and vertical foliations H and V, and let F be a measured foliation on S. Then ext�(F) �(i(F ;H))2; likewise ext�(F) � (i(F ;V))2.3 Gromov-hyperbolic spacesIn this section we will present an overview of some of the basic theory of Gromov-hyperbolic spaces.References for the material in this section are [8], [9], [5] and [4].Let (�; d) be a metric space. If � is equipped with a basepoint 0, de�ne the Gromov producthxjyi of the points x and y in � to behxjyi = hxjyi0 = 12(d(x; 0) + d(y; 0) � d(x; y)):7



De�nition 3.1 Let � � 0 be a real number. The metric space � is �-hyperbolic ifhxjyi � min(hxjyi; hyjzi) � �for every x; y; z 2 � and for every choice of basepoint.We say that � is hyperbolic in the sense of Gromov if � is �-hyperbolic for some �.A metric space � is geodesic if any two points in � can be joined by a geodesic segment (notnecessarily unique). If x and y are in � we write [x; y], ambiguously, to denote some geodesic fromx to y.Heuristically, a �-hyperbolic space is \tree-like"; more precisely, if we de�ne an �-narrow geodesicpolygon to be one such that every point on each side of the polygon is at distance � � from a pointin the union of the other sides, then we haveProposition 3.2 In a geodesic �-hyperbolic metric space, every n-sided polygon (n � 3) is 4(n �2)�-narrow.In a geodesic hyperbolic space, the Gromov product of two points x and y is roughly the distancefrom 0 to [x; y]; we haveProposition 3.3 Let � be a geodesic, �-hyperbolic space and let x; y 2 �. Thend(0; [x; y]) � 4� � hxjyi � d(0; [x; y])for every geodesic segment [x; y].The boundary at in�nity of a hyperbolic space. If � is a hyperbolic space, � can beequipped with a boundary in a natural way. We say that a sequence fxng of points in � convergesat in�nity if we have limm;n!1hxmjxni =1; note that this de�nition is independent of the choiceof basepoint, by Proposition 3.3. Given two sequences fxmg and fyng that converge at in�nity,say that fxmg and fyng are equivalent if limm;n!1hxmjyni =1. Since � is hyperbolic, it is easilychecked that this is an equivalence relation. De�ne the boundary at in�nity @1� of � to be theset of equivalence classes of sequences that converge at in�nity. If � 2 @1� then we say that asequence of points in � converges to � if the sequence belongs to the equivalence class �. Write� = � [ @1�. When the space � is a proper metric space, the boundary at in�nity may also bedescribed as the set of equivalence classes of quasigeodesic rays, where two rays are equivalent ifthey are a bounded Hausdor� distance from each other.Quasi-isometries and quasi-geodesics. Let �0 and � be two metric spaces. Let k � 1 and� � 0 be real numbers. A quasi-isometry from �0 to � is a relation R between elements of �08



and � that has the coarse behavior of an isometry. Speci�cally, let R relate every element of �0to some subset of � (so that we allow a given point in �0 to be related to multiple points in �).We say that R is a (k; �)-quasi-isometry if for all x1 and x2 2 �0,1kd(x1; x2)� � � d(y1; y2) � kd(x1; x2) + �whenever x1Ry1 and x2Ry2. Note that for a quasi-isometry, given x 2 �0 there is an upper boundto the diameter of the set fy 2 �jxRyg, that is independent of x.We say that R is a cobounded quasi-isometry if in addition, there is some constant L such thatif y 2 �, y is within L of some point that is related by R to a point in �0. If R is a coboundedquasi-isometry then R has a quasi-inverse, that is, a relation R0 that relates each element of � tosome subset of �0, with the following property: there is some constant K for which if x and x0 areelements of �0 such that for some y 2 �, xRy and yR0x0, then d(x; x0) � K.A quasi-isometry between two �-hyperbolic spaces extends continuously to the boundary, in thefollowing sense:Theorem 3.4 Let �0 and � be Gromov-hyperbolic, and let h : �0 ! � be a quasi-isometry. Forevery sequence fxng of points in �0 that converges to a point � in @1�0, the sequence fh(xn)gconverges to a point in @1� that depends only on �, so that h de�nes a continuous map from @1�0to @1�. The map h : @1�0 ! @1� is injective.Theorem 3.4 is, among other things, a key step in the proof of Mostow's Rigidity Theorem.If the metric on � is a path metric, a (k; �)-quasigeodesic is a recti�able path p : I ! �, whereI is an interval in R, such that for all s and t in I,1k l(pj[s;t])� � � d(p(s); p(t)) � k � l(pj[s;t]) + �:Note that if a path p : I ! � is parametrized by arc length then it is a quasigeodesic if and onlyif it is a quasi-isometry.The behavior of quasigeodesics in the large is like that of actual geodesics. In particular, wehave the following analogue of Proposition 3.3:Proposition 3.5 Let s : I ! � be a quasigeodesic with endpoints x and y. Then there areconstants K and C that only depend on the quasigeodesic constants of s and the hyperbolicityconstant of �, such that 1Kd(0; s(I)) � C � hxjyi � Kd(0; s(I)) + C:9



4 The Curve Complex and the Relative Hyperbolic SpaceThe Curve Complex. If S is an oriented surface of �nite type, an important related objectis a simplicial complex called the curve complex. Except in the cases when S is the torus, theonce-punctured torus or a sphere with 4 or fewer punctures, we de�ne the curve complex C(S) inthe following way: the vertices of C(S) are homotopy classes of non-peripheral simple closed curveson S. Two curves are connected by an edge if they may be realized disjointly on S, and in generala collection of curves spans a simplex if the curves may be realized disjointly on S.When S is a sphere with 3 or fewer punctures, there are no non-peripheral curves on S, soC(S) is empty. When S is the 4-punctured sphere, the torus, or the once-punctured torus, thereare non-peripheral simple closed curves on S, but every pair of curves must intersect, so C(S) hasno edges. For these three surfaces, a more interesting space to consider is the complex in whichtwo curves are connected by an edge if they can be realized with the smallest intersection numberpossible on S (one for the tori; 2 for the sphere); we alter the de�nition of C(S) in this way. Inthese cases, C(S) is the Farey graph, which is well-understood (see for example [16, 18]).We give C(S) a metric structure by making every simplex a regular Euclidean simplex whoseedges have length 1. The main result of [14] is the following:Theorem 4.1 (Masur-Minsky) C(S) is a �-hyperbolic space, where � depends on S.Note that C(S) is clearly quasi-isometric to its 1-skeleton C1(S), so that in particular C1(S) is alsoGromov-hyperbolic.The Relative Teichm�uller Space. For a �xed � > 0, for each curve � 2 C0(S) denoteThin� = f� 2 T (S) : ext�(�) � �g:We will assume that � has been chosen su�ciently small that the collar lemma holds; in that case,a collection of sets Thin�1 ; :::Thin�n has non-empty intersection if and only if �1; :::; �n can berealized disjointly on S, that is, if �1; :::; �n form a simplex in C(S).We form the relative or electric Teichm�uller space Tel(S) (following terminology of Farb [6]) byattaching a new point P� for each set Thin� and an interval of length 12 from P� to each point inThin�. We give Tel(S) the electric metric del obtained from path length.Masur and Minsky have shown the following:Theorem 4.2 [14] Tel(S) is quasi-isometric to C1(S).The quasi-isometry R between C1(S) and Tel(S) is de�ned as follows: if � is a curve in C0(S),� is related to the set Thin� (or equally well, to the \added-on" point P�). It is not di�cultto see that the relation R between C0(S) and Tel(S) is a quasi-isometry (see [14] for a proof).C0(S) is 12 -dense in C1(S) (that is, every point in C1(S) is within 12 of a point in C0(S)) and the10



collection fThin�g is D-dense in Tel(S) for some D, so the relation R may easily be extended tobe a cobounded quasi-isometry from C1(S) to Tel(S), making C1(S) and Tel(S) quasi-isometric.An immediate corollary of Theorem 4.2 and Theorem 4.1 is the following:Theorem 4.3 [14] The electric Teichm�uller space Tel(S) is hyperbolic in the sense of Gromov.We will use h�j�iel to denote the Gromov product on Tel(S).Quasigeodesics in Tel(S). Since T (S) is contained in Tel(S), each Teichm�uller geodesic is a pathin Tel(S). Because certain portions of T (S) are collapsed to sets of bounded diameter in Tel(S), apath whose Teichm�uller length is very large may be contained in a subset of Tel(S) whose diameteris small. So to understand the geometry of these paths in Tel(S), we introduce the notion ofarclength on the scale c, after Masur-Minsky: if c > 0 and p : [a; b] ! Tel(S) is a path, we de�nelc(p[a; b]) = c � n where n is the smallest number for which [a; b] can be subdivided into n closedsubintervals J1; :::; Jn such that diamTel(S)(p(Ji)) � c.We will say that a path p : [a; b]! Tel(S) in Tel(S) is an electric quasigeodesic if for some c > 0,k � 1 and u > 0 we have1k lc(p[s; t])� � � del(p(s); p(t)) � k � lc(p[s; t]) + �for all s and t in [a; b] (note that the right-hand side of the inequality is automatic).Masur and Minsky have shown the following, which will be important for understanding theboundary at in�nity of Tel(S):Theorem 4.4 [14] Teichm�uller geodesics in T (S) are electric quasigeodesics in Tel(S), with uni-form quasigeodesic constants.5 Convergence of sequences of Teichm�uller geodesicsFor the remainder of the paper we will assume that we have chosen a basepoint 0 2 T (S), giving anidenti�cation of T (S) with the open unit ball of quadratic di�erentials on 0, and a compacti�cationT (S) of T (S) by endpoints of Teichm�uller geodesic rays from 0 (that is, by unit norm quadraticdi�erentials or equivalently, by projective measured foliations).In view of Proposition 3.5 and the fact that Teichm�uller geodesics are electric quasigeodesics,we can get some control over the behavior of sequences going to in�nity in the electric space if weknow the behavior of the Teichm�uller geodesic segments between elements of the sequences. Themain fact we will need is the following:Proposition 5.1 Let F and G be minimal foliations in PMF(S). Suppose fxng and fyng aresequences in T (S) that converge to F and G, respectively, and let sn denote the geodesic segment11



with endpoints xn and yn. Then as n ! 1, the sequence fsng accumulates onto a set s in T (S)with the following properties:(1) s \ T (S) is a collection of geodesic lines whose horizontal and vertical foliations are topo-logically equivalent to F and G; this collection is non-empty exactly when F and G �ll up S (thatis, when F and G are not topologically equivalent).(2) s \ @T (S) consists of foliations in PMF(S) that are topologically equivalent to F or G.Proof: We will begin by showing property (2). Let fzng be a sequence of points lying on thesegments sn such that zn ! Z 2 PMF(S); we will show that Z is topologically equivalent toeither F or G.Suppose �rst that the zn lie over a compact region of moduli space. Then we claim that afterdropping to a subsequence there is a sequence f�ng of distinct simple closed curves on S such thatextzn(�n) is bounded. Since the zn lie over a compact region of moduli space, there are elementsfn of the mapping class group that move the zn to some �xed compact region of Teichm�ullerspace; since the zn are not contained in a compact region of Teichm�uller space, we can drop toa subsequence so that the maps fn are all distinct. So, after dropping to a further subsequence,there is some curve � on S for which the curves �n = f�1n (�) are all distinct; these curves willhave bounded extremal length on the surfaces zn, establishing the claim. Now since PMF(S) iscompact, after dropping to a further subsequence, the sequence f�ng converges in PMF (S); hencethere exist constants rn such that the sequence frn�ng converges in MF(S) to a foliation Z 0, andsince the curves �n are all distinct, we have rn ! 0. If instead the zn do not lie over a compactregion of moduli space then after dropping to a subsequence there is a sequence f�ng of (possiblynon-distinct) simple closed curves such that extzn(�n) ! 0, and a sequence of bounded constantsrn such that rn�n converges to some Z 0 2MF(S).Let qn denote the quadratic di�erential on the basepoint 0 that is associated to zn by theidenti�cation of T (S) with DQ(0), so that after dropping to a subsequence, qn ! q 2 SQ(0)whose vertical foliation is Z. Let Fn denote the vertical foliation of qn. If we pull back qn bythe Teichm�uller extremal map between 0 and zn to get a quadratic di�erential ~qn on zn, thevertical foliation of ~qn is K1=2n Fn, where Kn is the quasiconformality constant of the extremal map.By Lemma 2.4, extzn(rn�n) � (i(rn�n;K1=2n Fn))2, so i(rn�n;Fn) ! 0 as n ! 1. So we havei(Z 0;Z) = 0.On zn, let �n denote the quadratic di�erential determining the segment sn, and let Hn and Vndenote the horizontal and vertical foliations associated to �n (so that as we move along sn in thedirection from xn to yn, the transverse measure of Hn contracts and the transverse measure of Vngrows). Since extzn(�n) � (i(�n;Hn))2, we have i(rn�n;Hn)! 0; likewise i(rn�n;Vn)! 0. Let anand bn be constants such that after dropping to subsequences, anHn and bnVn converge to some Hand V 2 MF(S), respectively. k�nk = i(Hn;Vn) = 1, so since i(H;V) must be �nite, the productanbn is bounded. So we must have at least one of the sequences fang and fbng bounded (say fang).Then i(rn�n; anHn)! 0 as n!1, so i(Z 0;H) = 0.12



Let ~�n denote the quadratic di�erential on xn obtained by pulling back �n by the Teichm�ullerextremal map from xn to zn. Let ~Hn denote the horizontal foliation of ~�n. As we move along sn fromzn back to xn horizontal measure grows, so we have kn ~Hn = Hn where the constants kn are less than1. Following the argument of the �rst paragraph of the proof, there is a sequence f�ng of simpleclosed curves on S and a sequence of bounded positive constants tn such that extxn(tn�n) ! 0and tn�n ! F 0 where i(F ;F 0) = 0 (so that F 0 is topologically equivalent to F , by minimality ofF). This implies that i(tn�n; ~Hn) ! 0, so i(tn�n;Hn) ! 0. Taking limits, i(F 0;H) = 0 so H isalso topologically equivalent to F . But we have already shown that i(H;Z 0) = i(Z 0;Z) = 0, so byminimality Z is topologically equivalent to F , establishing property (2).To show that s\T (S) consists of geodesic lines determined by horizontal and vertical foliationstopologically equivalent to F and G, suppose now that fzng is a sequence of points in the segmentssn such that zn ! z 2 T (S). Again, let �n denote the quadratic di�erential on zn that determinesthe segment sn, and let Hn and Vn denote the associated horizontal and vertical foliations. Afterdescending to a subsequence, we can assume that qn ! q, a quadratic di�erential on z; Hn and Vnwill converge respectively to the horizontal foliation H and vertical foliation V of q. By argumentssimilar to those of the preceding paragraphs, H and V are topologically equivalent to F and G,respectively. Now the segments sn all intersect a compact neighborhood of z, so since they forman equicontinuous family of maps a subsequence must converge uniformly on compact sets to thecomplete geodesic line containing z determined by q.When F and G are topologically equivalent, it is impossible for any point in T (S) to support aquadratic di�erential whose horizontal and vertical foliations are topologically equivalent to F andG; hence when F and G are topologically equivalent, s \ T (S) must be empty.It remains to show that when F and G �ll S, s \ T (S) is nonempty. We have shown thats \ @T (S) consists of foliations in PMF(S) that are topologically equivalent to F or G. The setof foliations in PMF(S) topologically equivalent to F is closed (likewise for G), since if Fn is asequence of foliations topologically equivalent to F and Fn ! H 2 PMF (S) then by we havei(F ;H) = 0, so that H is topologically equivalent to F . So since F and G are not topologicallyequivalent, s\@T (S) consists of at least two connected components. The segments sn are connectedso their accumulation set s must be connected; hence s \ T (S) cannot be empty. 2Note that in the course of the proof we have also shown the following about sequences ofsegments whose endpoints converge to foliations that are not minimal:Proposition 5.2 Let xn and yn be sequences in T(S) converging to F and G in PMF (S), let snbe the geodesic segment with endpoints xn and yn, and let s be the set of accumulation points inT (S) of the segments sn. Then the only possible minimal foliations in s \ PMF(S) are those (ifany) that are topologically equivalent to F or G.Using similar arguments we can prove the following about convergence of Teichm�uller raysemanating from a common point (not necessarily the chosen basepoint 0 in T (S)):13



Proposition 5.3 Let z be a �xed point in T (S), let zn be a sequence of points in T (S) thatconverge to Z 2 PMF (S), and let rn be the geodesic segment from z to zn. After descending to asubsequence, the segments rn converge uniformly on compact sets to a geodesic ray r with verticalfoliation V, such that i(Z;V) = 0.Proof: Assume that the segments rn are paths parametrized by arclength, and extend the rn tomaps rn : R! T (S) by setting rn(t) = zn for all t � d(z; zn). The family frng is equicontinuous, soby Ascoli's theorem, after dropping to a subsequence the maps rn converge uniformly on compactsets to a map r : R! T (S), which is necessarily a geodesic ray emanating from z.Let V be the vertical foliation of r. We wish to show that i(Z;V) = 0. Let �n be the quadraticdi�erential on z determining the segment rn, and let Vn be the vertical foliation of �n, so thatVn ! V. Then extzVn ! extzV, so extzVn is bounded. Now d(z; zn) = 12 log( extzVnextznVn ) (see [12]),so since d(z; zn) ! 1, extznVn ! 0 as n ! 1. Now the argument of the third paragraph of theproof of Proposition 5.1 (changing the rn�n to Vn) shows that i(Z;V) = 0. 26 The boundary of the relative Teichm�uller spaceAs a start to proving Theorem 1.2 we will prove the following, which shows that minimal foliationsin PMF(S) are an in�nite electric distance from any point in T (S).Proposition 6.1 Let F 2 PMF(S) be minimal and let fzng be a sequence of points in T (S) thatconverges to F . Then del(0; zn)!1 as n!1.Proof: Suppose that del(0; zn) does not go to in�nity. Then after dropping to a subsequence wemay assume that the zn lie in a bounded electric neighborhood of 0. As in the proof of Proposition5.1, we can construct a sequence of curves �n such that the values extzn(�n) are bounded, andsuch that for some bounded constants rn, the sequence rn�n converges in MF(S) to a foliationF0 such that i(F ;F0) = 0. Now since �n has bounded extremal length on zn, we have that zn liesin a bounded neighborhood of Thin�n , so the values del(0; Thin�n) are bounded. So the curves�n, regarded as elements of the curve complex, are a bounded distance (say M) from some �xedcurve �. Now for each �n we can construct a chain of curves �n;0; :::; �n;M such that �n;0 = �nand �n;M = �, and for all i, d(�n;i; �n+1;i) = 1. So �n;i and �n;i+1 are disjoint, or in other words,i(�n;i; �n;i+1) = 0. After dropping to subsequences, for each �xed i, the sequence �n;i converges(after bounded rescaling) to a measured foliation Fi, and for all i we have i(Fi;Fi+1) = 0. SinceF is minimal this implies that all the foliations Fi are topologically equivalent to F . But FM = �,which gives a contradition. 2The proof of Theorem 1.2 will be divided into the next three propositions. We begin by showingthat we have a well- de�ned, continuous map from PMFmin(S) to @1Tel(S).14



Proposition 6.2 The inclusion map from T (S) to Tel(S) extends continuously to the portionPMFmin(S) of PMF (S) consisting of minimal foliations, to give a map � : PMFmin(S) !@1Tel(S).Proof: Let F 2 PMFmin(S). We must show that every sequence fzng in T (S) converging toF , considered as a sequence in Tel(S), converges to a unique point in @1Tel(S). So suppose thatthere is a sequence fzng ! F that does not converge to a point in @1Tel(S). Then there aresubsequences fxng and fyng of fzng such that hxnjyniel is bounded. Let sn denote the Teichm�ullergeodesic segment between xn and yn. Since the segments sn are electric quasigeodesics with uniformquasigeodesic constants, by Proposition 3.5 there is a point pn on each sn that is a bounded electricdistance from 0. By Proposition 5.1, the points pn converge to a foliation in PMFmin(S) that istopologically equivalent to F . But then according to Proposition 6.1, del(0; pn) must go to in�nityas n!1. This gives a contradiction. 2We now show that the non-injectivity of the map � : PMFmin(S) ! @1Tel(S) is limited toidentifying foliations that are topologically equivalent but not measure equivalent.Proposition 6.3 Let F and G be minimal foliations in PMF(S). Then �(F) = �(G) if and onlyif F and G are topologically equivalent.Proof: Suppose �rst that F and G are topologically equivalent, and suppose that �(F) 6= �(G).Then the same argument as in the proof of Proposition 6.2 would give a sequence of points fpngthat are a bounded electric distance from 0 and that converge to a minimal foliation in PMF(S);but this is impossible by Proposition 6.1. Hence when F and G are topologically equivalent,�(F) = �(G).Now suppose that F and G are not topologically equivalent, and let fxng and fyng be sequencesin T (S) converging to F and G, respectively. We will show that fxng and fyng do not convergeto the same point in @1Tel(S), by showing that we can drop to subsequences so that hxnjyniel isbounded as n ! 1. Let sn denote the Teichm�uller geodesic segment with endpoints xn and yn.Since F and G are not topologically equivalent, by Proposition 5.1 we can drop to a subsequenceso that the sn converge uniformly on compact sets to a Teichm�uller geodesic line L. Choose apoint p 2 L, and a sequence pn 2 sn converging to p. Then as n ! 1, d(0; pn) is bounded,hence del(0; �(pn)) is also bounded. So by Proposition 3.5, hxnjyniel is bounded as n ! 1. Thus�(F) 6= �(G). 2The following proposition completes the proof of Theorem 1.2.Proposition 6.4 The map � : PMFmin(S) ! @1Tel(S) is surjective. Moreover, if fxng is asequence in T (S) that converges to a non-minimal foliation in PMF(S) then no subsequence offxng converges in the electric space Tel(S) to a point in @1Tel(S).15



Proof: Let X 2 @1Tel(S), and let xn be a sequence in Tel(S) that converges to X ; without loss ofgenerality we may assume that each xn lies in T (S), since if xn is one of the added-on points inthe construction of Tel(S) then we may replace xn by a point in T (S) that is distance 12 from xn,without changing the convergence properties of the sequence fxng. We will show that a subsequenceof fxng converges to a minimal foliation F 2 PMF(S); then �(F) = X .Since T (S) is compact, after dropping to a subsequence, fxng converges to some F 2 PMF(S).Suppose F is not minimal. We will show that for some B < 1, for each xn there are in�nitelymany xm such that hxnjxmiel < B; this would contradict convergence in Tel(S) of the sequencefxng. Fix xn, and let rmn denote the geodesic segment with endpoints xn and xm. By Proposition5.3, a subsequence of the rmn (which we will again call rmn) converges uniformly on compact setsto a geodesic ray rn. Let Hn denote the horizontal foliation of rn; by Proposition 5.3 we havei(F ;Hn) = 0. The foliations F and Hn are not minimal, so each one contains a simple closedcurve, which we will denote � and 
n, respectively. Now we have i(�; 
n) = 0, so that in the curvecomplex, the distance from � to 
n is at most 1; hence the electric distance from Thin� to Thin
nis bounded independent of n, since the curve complex is quasi-isometric to Tel(S).The simple closed curve 
n contained in Hn may be chosen so that as t ! 1, extrn(t)
n ! 0(see [19], Lemma 8.3). So for all su�ciently large t, rn(t) belongs to Thin
n . Since the rays rmnconverge to rn uniformly on compact sets, for all m su�ciently large there is a point pmn on rmnthat lies in Thin
n . Now we havedel(0; pmn) � del(0; Thin
n) + 1 � del(0; Thin�) + del(Thin�; Thin
n) + 2since each thin set has diameter 1 (here the electric distance between two sets S1 and S2 means thesmallest distance between any pair of points in S1 and S2, respectively). Note that the right-handside of the inequality does not depend on n or m since del(Thin�; Thin
n) is bounded independentof n. Now by Proposition 3.5 we have that for all m su�ciently large, hxnjxmiel is bounded, andthe bound does not depend on n or m; this contradicts the fact that the sequence fxng convergesto a point in the boundary at in�nity of Tel(S), so our assumption that F is not minimal must befalse. Hence F is minimal, and we have �(F) = X . 2Note that given a nonminimal foliation F , there are sequences in T (S) converging to F whoseelectric distance from 0 goes to in�nity; however, no subsequences of these will converge to a pointin @1Tel(S), so that in particular Tel(S) [ @1Tel(S) is not compact. It is simple to construct suchsequences: the minimal foliations are dense in PMF(S) (see for instance [7]), so there is a sequencefFng of minimal foliations that converges to F . By Proposition 6.1, for every M > 0, each Fn hasa neighborhood whose points are all at least M from 0 in the electric metric; hence we may easilychoose a sequence fpng of points contained in small neighborhoods of the foliations Fn, such thatfpng converges to F and del(0; pn)!1.If F is a foliation in PMF(S), let �(F) denote the equivalence class of foliations in PMF(S)that are topologically equivalent to F . We have shown that the boundary at in�nity of Tel(S) and16



C(S) can be identi�ed with topological equivalence classes of minimal foliations. In spite of thefact that the Teichm�uller compacti�cation of T (S) by PMF (S) depends heavily on the choice ofbasepoint, the arguments we have given show that the description we have obtained of the boundaryof C(S) is natural:Theorem 1.4 Let f�ng be a sequence of elements of C1(S) that converges to a foliation F in theboundary at in�nity of C(S). Then regarding the curves �n as elements of the projective measuredfoliation space PMF (S), every accumulation point of f�ng in PMF(S) is topologically equivalentto F .7 AppendixIn order to use sequential arguments to prove the continuity results of the main theorems, itis necessary to understand the point-set topology of Fmin(S), the space of minimal topologicalfoliations on S. This is particularly important in light of the fact that the entire space F(S) oftopological foliations, with the topology induced from PMF(S) by forgetting the measures, is notHausdor�. We will begin with the following:Proposition 7.1 The measure-forgetting quotient map p : PMFmin(S) ! Fmin(S) is a closedmap, and the pre-image of any point of Fmin(S) is compact.Proof: To show that p is a closed map, let K � PMFmin(S) be a closed set. Then we claimthat the set p�1(p(K)) is closed; this will imply that p(K) is closed. So, let fxng be s sequence inp�1(p(K)) that converges to a point x in PMFmin(S); we must show that x 2 p�1(p(K)). Thereis a sequence of yn 2 K such that p(xn) = p(yn). Since PMF(S) is compact, after dropping to asubsequence we may assume that yn ! y 2 PMF(S). Now since p(xn) = p(yn), we have that xnand yn are topologically equivalent, which implies that i(xn; yn) = 0. Hence i(x; y) = 0, so since xis minimal, x and y are topologically equivalent by Proposition 2.1, so that p(x) = p(y). We nowknow y to be in PMFmin(S), so since K is closed in PMFmin(S), we have y 2 K. This in turnimplies that x 2 p�1(p(K)), so p�1(p(K)) is closed.To show that the pre-image of any point is compact, let z be a point in Fmin(S) and letZ = p�1(z). Let fxng be a sequence of points in Z; since PMF (S) is compact, after dropping toa subsequence we may assume that xn converges to some x 2 PMF(S). Let y be a �xed point inZ. Then the set Z is the set of all foliations in PMF(S) that are topologically equivalent to y.Hence i(y; xn) = 0 for all n, so i(y; x) = 0. Thus by minimality, x is topologically equivalent to y,so x 2 Z. So Z is compact. 2The space PMF(S) is metrizable and normal, since it is a topological sphere; hence so isPMFmin(S) � PMF(S). The following proposition will establish in particular that Fmin(S)17



is �rst countable and Hausdor�, which are exactly the properties needed in order for sequentialarguments to prove continuity:Proposition 7.2 Let X be a metric space that is normal, and let p : X ! X̂ be a quotient mapthat is a closed map, and such that the pre-image of any point of X̂ is compact. Then the quotienttopology on X̂ is �rst countable and normal.Proof: We will show �rst that X̂ is normal. Let S and T be disjoint closed sets in X̂ ; we must showthat S and T have disjoint neighborhoods. The sets p�1(S) and p�1(T ) are closed and disjoint inX,so since X is normal there are disjoint open sets U and V such that p�1(S) � U and p�1(T ) � V .Then X � U and X � V are closed, so p(X � U) and p(X � V ) are closed since p is a closedmap. Now S has empty intersection with p(X � U), so X̂ � p(X � U) is a neighborhood of S;likewise X̂ � p(X �V ) is a neighborhood of T . It is easily checked that the sets X̂ � p(X �U) andX̂ � p(X � V ) are disjoint, which establishes normality.To show that X̂ is �rst countable, let z 2 X̂; we must de�ne a countable neighborhood basisaround z. Let Z = p�1(z), and let Un be the open neighborhood around Z of radius 1n . LetVn = p(Un). If V is any neighborhood of z, then p�1(V ) is a neighborhood of the set Z, so sinceby assumption Z is compact, p�1(V ) must contain one of the sets Un; hence V must contain oneof the sets Vn. So we will be done if we can show that every Vn contains a neighborhood of z. InX, let Wn = p�1(Vn); note that Un � int(Wn). Let Sn = X � int(Wn), so that Sn \ Un = ;. Theset p(Sn) is closed in X̂ since p is a closed map, so by normality of X̂, there is some neighborhoodTn of x disjoint from p(Sn). Now p�1(Tn) � Wn, so Tn � p(Wn) = Vn. Hence the sets Tn form alocal basis of neighborhoods of z. 2References[1] L. Bers. Spaces of Kleinian groups. Several Complex Variables, I (Proc. Conf., Univ. ofMaryland, College Park, Md, 1970. Springer, Berlin (1970), 9-34.[2] F. Bonahon. Bouts des vari�et�es hyperboliques de dimension 3. Ann. of Math. 124 [1986]71-158.[3] R. D. Canary. Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 6 (1993), 1-35.[4] J. Cannon. The theory of negatively curved spaces and groups. Ergodic Theory, SymbolicDynamics, and Hyperbolic Spaces (Trieste, 1989). Oxford Univ. Press, London and NewYork (1991), 315-369.[5] M. Coornaert, T. Delzant and A. Papadopoulos. G�eom�etrie et theorie des groupes: lesgroupes hyperboliques de Gromov. Springer-Verlag, Berlin and New York, 1990.18
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