‘Deformations of

Length Functions in Groups

Richard K. Skora t

In this paper we study the space of actions of a group on R-trees. An R.-free is a metric space
(7', d), such that any two distinct points z, y are joined by a unique arc [z,y) and every arc is isometric
to a segment in R. Let G act on both T and 7”. It is understood that an action is always by isometries.
A morphism from a tree T" to a tree T" is an equivariant map ¢ : T — T”, such that for each segment
[%,y] there is a segment [2,w] C [z,y], such that ¢ |[z,w] is an isometry.

Let ¢ : T — 7" be a morphism. We will show that ¢ may be continuously deformed to the identity.
In particular, we define morphisms ¢, : Ty — T, 0 < 5 < t < 1, such that doy = dand ¢y o0de; = drs.
Then here is our main result, '&

4.8 Theorem. Let G be a group; X' be the space of all actions of G on R-trees; and C(X) the space
of all morphisms between elements of X. Then the function

e(X) x {(s, )0 < s <t < 1} - C(X)

defined as (¢,(s,1)) = ¢yt is continuous.

A morphism ¢ : 7' — T has both properties of infiniteness and finiteness. It may happen that the
pre-image of every point is infinite and unbounded. However, it readily follows from the definition
that for any segment o in T', ¢ folds at at most finitely many points on ¢. A morphism ¢ : T — T}
folds at a point = € T if there are segments [z, y} and [z, 3], such that [z,9] 0 [2,¢] = {z}; ¢llz, 4]
and ¢|[2, /] are embeddings; and ¢([z,y]) = #([=,¥']). In particular, the image of each segment is a
finite simplicial tree. To prove Theorem 4.8 we need to correctly deform the R-trees — the deformation
of the morphisms is free. We essentially deform by folding and we take the philosophy that folding
is a local process. It suffices to understand how to fold a segment into a finite simplicial tree. Our
deformation is very explicit.

We have the following applications.

6.3 Theorem. Let F,, be a free group of rank n and X be the space of all non-trivial semi-simple
actions of F, on R-trees. Then X is coniractible.

The idea in the proof of Theorem 6.3 is to construct a retract of sorts. F, is the fundamental
group of a simple space — the wedge of n circles, Let G be the space of actions on R-trees which are
dual to measured laminations on the wedge of n circles. This space is easily seen to be homeomorphic
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to (n ~ 1}-simplex times R* which is contractible. To each element 77 in X we continuously associate
a morphism from an element T of ¢ to 77, By applying Theorem 4.8 one deforms T" to T,

The deformation is controlled enough to conclude that certain important subspaces of &' are also
contractible. In particular we give new proofs that both Culler-Vogtmann space and its closure are
contractible. '

Here is our second application.

7.3 Theorem. Let F be a closed hyperbolic surface and X' be the space of all non-trivial semi-simple
actions of m F on R-trees. Then X strong deformation retracts {o a sphere of dimension —3x(F).

The idea in the proof of Theorem 7.3 is similar to above. Only this time G is the space of actions
on R-trees which are dual to measured geodesic laminations on F'. This space is homeomorphic to
S" x R*, where n = —3x(F) [Th).

This paper extends the ideas of Michael Steiner [St2]. He considered the space of actions of the free
group of rank n on R-trees. He used two facts about this group. It has a free product factorization
with factors Z; and the actions of Z are classified. The actions of the factors are in a certain sence
independant of each other. He then used [St1] to deform all actions to a standard action. He also
obtained some of our results in §6.

M. Culler and J. W. Morgan [Cu-Mo] asked what the space of non-trivial actions on R-trees was
for an arbitrary group. Theorems 6.3 and 7.3 answer that question upto homotopy for the free group
and the fundamental group of a closed hyperbolic surface. The methods of §§6 and 7 work for any
group which has a corredsponding space G to which Lemmas like 6.2 and 7.2 applies. It is an obvious
question whether in general P LF(G) strong deformation retracts to ¢, where G is the space of actions
of G on R-trees which are dual to measured laminations on some finite complex with fundamental
group G7?

I am very grateful to Marc Culler and Peter B. Shalen for helpful discussions.

1. Definitions.

The definitions below may also be found in [Mo-Sh1}, [Cu-Mo} and {A-B]. The following equivalent
definition of R-tree will be useful later. Let (T,d) be a metric space. Define [z,y] = {z|d(z,7) +
d(z,y) = d(z,y)}. An R-tree is a non-empty, metric space (T, d) satisfying

(i) for all &,y € T, [z, y] is isometric to a segment in R;
(il) for all 2,4,%2 € T, if [ilf,y] n [y: Z] = {y}! then [32,2’] = [:r:,y] u [y: Z}; and
(iii) for all #,y,z € T, there is a w € T, such that {z,y] N [y, z] = [y, v].

Given an R-tree T and @ € T, define B, = {[z,y]|y € T — {z} }. Define an equivalence relation
by [2,4] ~ {2, 2] if [z, ¥} N {2, 2] = [z,w], for some w € T — {2}. A direction at z is an equivalence
class in B,.

Let z € T. If z has exactly two directions, then say » is an edge, otherwise & is a verfez. Notice
that = is an edge if and only if T' — {2} has exactly two connected components.



In this paper an R-tree T always comes with a group (7 acting on the left by isometries. We will
denote the tree together with the action simply as T'.

The action G x T' — T is iriviel if there is a fixed point. The action is minimal if there is no
invariant proper subtree. The action is reducible if either

(i) every element of G fixeds a point of T
(i) G fixes exactly one end of T'; or
(iii) G leaves a set of two ends of T' invariant.

Otherwise, the action is frreducible. An action of type (iii) is a shift if it fixes each end and dihedral if
it interchanges the two ends. The action is semi-simple if it is either irreducible; trivial; or is reducible
of type (iii) above.

Given G X T' — T define its length function £ : G — {0,+00) by £(g) = €r(g) = min{z €
T{d(z,g(x)}}. The characteristic sel of g is T, = {z|d(z, ¢{z)) = £(g)}. Given a base point z, € T,
the Lyndon length function {Ly] is £L(g) = d(z.,g(z.)). We will work with the length function as
opposed to the Lyndon length function.

The space of length functions LF(G) C [0,400) is the set of all length functions. This space
is usually not compact, so it is preferable to work with the following. The space of projective length
functions PLF(G) is the image of LF(G) — 0 in ({0, +00)¢ — 0)/R*. If G is finitely generated, then
PLF(G) is compact {Cu-Mo}, [Pau].

A morphism from a tree T to a tree T is an equivariant map ¢ : T° — 77, such that for each
segment [z, y] there is a segment [z, w] C [z, 3}, such that ¢ | [z, w] is an isometry. The morphism folds
at a point & € T if there are segments [z,y] and [z,¢'], such that [z,¥] N[z,¥'] = {=}; ¢i[=,y] and
#lix, ¥] are embeddings; and ¢([z, y]} = ¢([z,¥’}). A morphism either is a monomorphism or folds at
some point [Mo-Ot].

2. Topology.

M. Gromov [Gr] defined a topology on a set of metric spaces. This was generalized independantly
by both Paulin [Paul] and K. Fukaya [Fu} to an equivariant topology on a set of metric spaces which a
group acts on. The topology of Paulin is finer. In this section we follow [Paul] and define’a topology
on a set of equivariant maps between metric spaces.

We begin by reviewing. Let X, Y be metric spaces. An e-approzimation from X to Y is a relation
R C X x Y, such that R is onto both X and Y; and zoRyo, =1 Ry, implies [d(zo, 21} — d(yo, 11)| < €.
(The relation R is onto if its image is onto under projection to each of X and Y.)

Let G acton both X and Y. Let PC G, KX C X and L CY. An e-approximation R from K to
L is P-equivariantifa € P,z € K, oz € K,y € I and 2 Ry implies ay € L and azRay. Notice that
if there is a P-equivariant, e-approximation from X to Y and a P-equivariant, -approximation from
Y to Z, then there is an P-equivariant, (¢ + n)-approximation from X to Z.

This allows us to define a topology on a set of G-metric spaces. Fix a group G and X be a set of
G-metric spaces. Given X € X', K a compact subset of X, P a finite subset of G and € > 0, define
the basic open sef U(X, K, P, ¢) to be the set of all ¥ € &', such that for some compact L CY there



is a P-équivariant, closed ¢-approximation from K to L. (The relation R is closed if it is closed as a
subspace of X x Y.) Let X have the topology generated by all basic open sets. These basic open sets
have the following nice property. If Py C P, I(s C K aud ¢5 > ¢, then U(X, K, P, ) C U(X, Kq, Py, €0).
Notice that in general the topology is nof HausdorfT.

We now generalize the above.

2.1 Definition. Let ¢ : X — X',¢ : Y — Y’ be maps. An ¢-approzimation from ¢ : X — X' to
1Y — Y’ is a pair of relations (R, R'}, such that

(i) R and R’ are c-approximations from X to Y and from X' to Y, respectively; and

(if) «Ry implies ¢(x)R'P(y).

Define a metric on X x X' as d({zo, 25), {21, 2})) = max{d(xg, 21),d(2§, 21)}. Similarly define a
metric on Y X Y'. We will write (,2')(R, R')(y,v"), whenever Ry and &'R'y’. Notice that (R, R')
is an e-approximation from X x X’ to Y x Y.

2.2 Definition. Let ¢ : X — X' ¢6 1 Y — ¥’ be equivariant maps between G-metric space. Let
PCG KxK' €CXxX and LxL'CY xY'. An e-approximation (R, R') from ¢ : K — K’ to
1 L — L' is P-equivariani if both R and R’ are P-equivariant.

Now let C be a set of equivariant maps between G-metric spaces. Let ¢ : X — X’ be in C,
Given K x K' a compact subset of X x X', P a finite subset of G and ¢ > 0, define the basic
open set U(¢, K x K', P,¢) to be the set of all maps ¢ : ¥ — Y’ in C, such that for some compact
Lx L' CY %Y’ there is a P-equivariant, closed ¢-approximation from ¢ : K — K' to ¢ : L — L/,
Let € have the topology generated by all basic open sets.

Given a function f : A — A, define D(f) = A, R(f) = A’. The following propositions are obvious.

2.3 Proposition. Let G be a group and X be a space of G-melric spaces and let C(X') be the space
of equivarian! maps between elements of X. Then the function C(X) — X defined by ¢ > D(¢) is
continuous. ]

2.4 Proposition. Let G be a group and X be a space of G-metric spaces and let C(X) be the space
of equivariant maps belween elements of X. Then the function C(X') — X defined by ¢ — R() is
conlinuous. u

2.5 Proposition. Let G be a group and X be a space of G-metric spaces and lel C(X) be the space
of equivariant maps between elements of X. Then the function X — C(X') defined by X — Idx is an
embedding. |



3. A Canonical Treec.

For this section fix a group & and a morphism ¢ : T' — T’ between two R-trees which G acts on,
We show there is a canonical deformation of T" to 77 in the following sense. It is proved that there
are morphisms between R-trees ¢4 : T, — T¢, 0 < 5 <t < 1, such that ¢ = ¢ and ¢, 0 ¢y = ¢yt
In the next section we show ¢,, varies continuously with ¢ and (s,t).

In particular we will deform T to T¥. This deformation may be complicated. However, it will
suffice to understand how to deform a segment to a finite simplictal tree. See Figures la. and 1b.

An epi-morphism from a segment to a finite simplicial tree
Figure la.
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A deformation from a segment to a finite simplicial tree
Figure 1b.

Define W = W(g) = T x T'. Let F be a decomposition whose elements are the sets T x {y},



Y-t

y € T'. Clearly W/F =T/, VA

More generally, define W; = W (¢) = {(z,2’) € W]d(¢(z),z') <M}, 0 < ¢ < 1. Notice that
W, contains the graph of ¢, for all ¢, Let F; a decomposition of W; whose elements are the path
components of Wy N (T x {y}), vy € T’. Let T; be the quotient W,/F. Since the decomposition is
equivariant, G acts on T;. The quotient Ty has the quotient topology, but we will not make use of it.
We will directly define a metric on 7y which makes it an R-tree.

Let V = {(s,1)|0 < s <t < 1}. Clearly for all (s,t) € V, the inclusion W, — W, induces a map
¢y 1 Ty — Ti. Notice that $o) = ¢ and ¢y 0 s = dpr.

It will be shown that this map is a morphism between trees. Figure 2 is a picture of W(¢) for ¢
a morphism between segments T, T".

é\ =

=

w(4)
Figure 2

The first two lemmas follow from the fact that W, is a strong deformation retract of W,

3.1 Lemma. The space W, is connected and simply connected. [ ]

3.2 Lemma. The space Wy is a closed subsel of W. ' x

We now use an idea of H. Gillet and P. Shalen [G-S]. They found sufficient conditions for a
measured foliation on a singular surface to be dual to an R-tree. Their ideas translate routinely for
the decompositon of ;.

Say a path v : [0,1] — W, is faut if y~1(£) is connected for each component £ of F;. Say two taut
paths 4, %" are eguivalent if there is a 1-parameter family of taut paths 7., such that vo = v; 71 = 9;
and +(s), ¥, (s) lie in the same element of F;, for all ¥ and s =0, 1.

It will simplify subsequent proofs if we use the following. Say a map f from a simplex to Wy is
tinear if there are two segments ¢ C T, ¢’ C T”, such that the image of f lies in (¢ x o) N W, and
f as a function into o X o' is linear. In the following it will suffice to consider only piecewise-linear
paths. Recall that v’ is the path product of ¥ and ',

3.3 Lemma. Let vy =~y - Yn, be a path in W, such thal each v; is linear. If v is not taut, then for



some k <1, yp -« -y s nol faut and ypyqy -+ yi—1 Hes in a single element of F.

Proof. It suffices to consider only the case that y(0),¥(1) lie in the same element of 7;. By Lemma
3.1 there is a homotopy H, : {0,1] — W,, such that Hy = v; H,(0) = ¥(0), H,(1) = y(1), for all 5;
and H,([0,1]) lies in a single elenent of F;. We may assume that H is piecewise-linear.

So for each element £ € Fy, H~1(£) is a finite 2-complex in [0,1] x [0,1]. In the special case that
H~1(£) is 1-dimensional for all £ € F;, the result follows from Euler characteristic considerations.

In the more general case, the result follows similarly. n

3.4 Lemma, Lel v = y1727a be a path in Wy from by to by, such that each +; is linear and vz lies in
a single element of Fy. Then there exists paths v,v{, 75,74, and v3, such that vy = yiy{; vs = v{~4;
71, (¥8)~! are equivalent; v} lies in a single element of Fi; and v,7474 is taut.

~ Proof. This follows from Lemma 3.2. |

3.5 Lemma. For any two poeinis by, by €W, there is a piecewise-linear {aut path from by to by.
Futhermore, if v,7" are piecewise-linear taul paths from by to by, then v and ' are equivalent,

Proof. Let by, by €W,. Then there is a piecewise linear taut path v from by to b; which is a product
of a path from g to the graph of ¢; a path along the graph; and a path from the graph to b;.

If v is taut, we are done. If 7 is not taut, then write 4 = 7; ---v,, where each 7; is linear and
therefore taut. By Lemma 3.3 for some & < I, y;--- is not taut and 7g41 -+ 91-1 lies in a single
element of 7. Now appling Lemma 3.4 to v, (vk1 - *7i—1)71, We can replace 7y, - + + 7 by a taut path.

By induction on n we produce a taut path from by to by.

Now suppose ¥,%' are piecewise-linear taut paths from by to b;. Then 4'y~! is a piecewise-linear
path from by to bo. If 7,4’ is taut, then bg,b; lie on the same element of F; and v, ~" are equivalent.

Otherwise, we can apply Lemmas 3.3 and 3.4 to show again 7,9’ are equivalent. [ ]

Let o : Ty — T’ be induced by the inclusion Wy — W. Define d : Tt x Ty — R. by d{[zo), [z1]) =
length(x o v), where v is a piecewise-linear taut path from z to ;. Lemma 3.5 implies d is well
defined and Lemmas 3.3 and 3.4 imply it is a metric.

3.6 Lemma, (T},d) is an R-tree.

Proof. We only need to show that (7},d) satisfies the three axioms for an R-tree. This follows from
Lemmas 3.3 and 3.4. [

Lemma 3.6 essentially tells us that a certain quotient of T is an R-tree. It is unknown in general
when the quotient of an R-tree is an R-tree.



3.7 Lemma. For all (8,4) €V, ¢y : T, — Tt is a morphism.

Proof, Let [z,y] be a segment in T;. Then [z, y] is the image of a piecewise linear taut path in W,. So
there is some segment [, w] which is the image of a linear taut path, Clearly ¢,|{z, ] is an isometry. ®

We should warn the reader of two properties of our deformation. Firstly, it may happen that ¢ is
an epi-morphism, but on some ¢,, it is not an epi-morphism. See Figure 2. Secondly, it may happen
that the actions on both T, T” are minimal, but the action on some T} is not minimal. This causes a
minor problem which will be addressed later.

However, the deformation has some nice properties. We record one here for use in §§6 and 7.

3.8 Proposition. Let G acl on T end T’ and lel ¢ : T — T' be @ morphism. If the actions on T, T'
are semi-simple, then the action on Ty is semi-simple, for all0 <t < 1.

Proof. Consider the case that the action on 7' is irreducible. We will show that the action on Tj is
irreducible, for all 0 < ¢ < 1. Let a be some group element that acts as translation on 77. Since the
action on T is irreducible, there is another group element b conjugate to a which has an axis in T
disjoint with the axis of a in T'; and which necessarily also acts by translation on 7. By definition of
Tt the axes of a and bin Ty, 0 < ¢ < 1 intersect in a finite segment. Thus the action is irreducible.
The cases that T is trivial or reducible of type (iii) are easy to prove, [ |

Another nice property is that {d.}oge<t<1 converges strongly and its limit is Ty = 7". (See [G-S]
for the definitions.) We will not use this,

4, A Canonical Deformation.

This section is a continuation of §3. We show that ¢, : T, — T} varies continuously with ¢ and
(s,t). The proof is intuitive, but technical. Here is an over view.

We want to show that if (¢,(s,t)) and (¢, (p, ¢)) are close, then ¢,; and t,, are close. Roughly
we show that a relation from ¢ to ¢ induces a relation from ¢,¢ to ¢ip,. Since we measure distances
with taut paths, we show that a taut path in W;(¢) is close to a taut path in Wo(¢).

The first lemma is a strengthening of the first half of Lemma 3.5. Say a path v in Wi(¢) is very
linear if 7 is linear and the image lies in o x o', where ¢|o is linear.

4.1 Lemma. Let ¢ : K — K’ be a morphism with K, K' finite simplicial trees. Then there ezisis N
such that for all 25,21 € Wy(¢), there is a taut path vy = 1 - - yn in Wi(@) from zg to z, with each
¥ very linear.

Proof. Take N to be 3(3 + M), where M is the number of points in T at which ¢ folds. The rest of
the proof is like the proof of Lemma 3.5. |



We need some notation. If z € W, then let 2] = {z], be its image in T;. If R is a e-approximation
from K to L, then let R, be an open 5-neighborhood of R in K x L. It is easy to see that R, is an
(¢ + 2n)-approximation form K to L,

4.2 Lemma. Foralle > 0 thereis a § > 0, such that if (R, R') is a §-approzimation from ¢ : K — K'
top: L — L' and |1t ~ 15| < &8, then there is an e-approzimation (S,8') from ¢ : K — K' to
WL — L', such that for all z € Wy(@) there is a w € Wy(¢), such that 2(S,S5")w.

Proof. Let ¢ be given. Take § = ¢/3. Set (S, 5") = (Rs, R}). L

Let ¢ : K — K' and % : L — L’ be morphisms and let v, { be piecewise linear paths in W{¢),
W (1)), respectively. Say that v, { are e-close if there is an e-approximation from v : [0,1] — K x K'
to { :[0,1] = L x L'; and length(w o y|[to, 1)) = length(m o |{to,11]), for ali 0 < o < ¢ < 1.

4.3 Lemma. Forallc > 0 there is a § > 0, such thal if (R, R') fs a §-approzimation from ¢ : K — K'
top: L L 0<1,q<1; z € W(d), w; € Wy(¢), such that z;(R,R\w;, fori=0,1; andy is a
very linear path in Wi($) from zo o 2y, then there is a piecewise linear taut path ¢ in W{(1) from wy
lo wy and 7, ¢ are e-close.

Proof. Let ¢ be given. Take § = ¢/3. Suppose (R, R') is an $-approximation from ¢ : K — K’ to
Y : L — L', Also suppose z; € Wi(4), w; € W,(¥), such that z(R, R)w;, i = 0,1; and 7 is a very
linear path in W(¢) from zp to z;.

Let z; = (2¢,2{) and w; = (y;,}), { = 0, 1. By definition |d{z0,21) ~ d(yo, 31)| < 6 and |d(2}, 2}) —
d(yp: ¥1)| < 8. Let o be the linear path in Wy (%) from wy to wy. Clearly (Id,{(Rs, R})) is a ¢-
approximation from v : [0,1] = K X K’ to (g : [0,1] = L x L' and v, {; are e-close,

Also by definition |d(¢(zo), ¢{21)) — d(¥(w0), ¥(w1))| < &. Since d(zo,21) = d{(¢(x0), #(z1)), it
follows that |d(y0,31) — d(¥(%0), ¥(11))| < 26. So there is a piecewise linear taut path ¢ in W,(¥)
from wy to wy and (Id, (Rs, R)) is a e-approximation from v : (0,1) - K x K" to { : [0,1} = L x L'
and v, { are e-close. [ ]

4.4 Lemma. For all ¢ > 0 there is § > 0, such that if (R, R') is a é-approzimation from ¢ : K — K’
top: L — L' and | — ﬁ?' < &, then for every v =41 - yn in Wi($) from zp to z) with each v
very linear, and w; € Wo(y), such that z{R, R')w;, fori= 0,1 there is { = {1 -+-(x in Wo(¢) from
w, to wy with each {; piecewise linear taut, such that v, {; are e-close, foralli=1,...,N.

Proof. Let € > 0 be given, Set ¢ = ¢ and take the pair ¢;,6; as in Lemma 4.3. Set €3 = §; and take
the pair €3, 82 as in Lemma 4.2, Take § = §;.

Suppose (R, R') is a §-approximation from ¢ : K — K’ to ¢ : L — L' and | — 1—2?1 < §. Let
¥ =71+~ in Wi($) from 2z to 2, with each ¥; very linear, and w; € Wy (#), such that z (R, R')w;,
for i =0,1.

By choice of & there is an ey-approximation {5, §'), such that for each point z € Wy(¢) there is



w € Wy(¢), such that z(S5,5)w. By choice of 8; there is & path ¢ = ¢y -+, in Wy(¥) from wg to
wq, such that each {; is a piecewise linear taut path and +;, {; are e-close, for alli=1,..., N. [ ]

The next lemmas are delicate. By no means is the map (4,(s,t)) + ¢,¢ uniformly continuous.
There are nearby morphisms ¢, ¢ from a segment to a tree, such that ¢4,y are far apart for some
t. See Figure 3.

Two morphisms from a segment to a tree
Figure 3

4.5 Lemma, Let ¢ : K — K' be a morphism with K, K’ finite simplicial trees. For all ¢ > 0 there is
a b >0, such that if (R, R') is a 6-approzimation from¢: K — K' top : L — L' and |5~ 1—%1 < 6,
then

d({zo}, [21)e) < €,

for all z; € Wi(¢), w; € Wy(yp), such that z;(R, Ry, for i = 0,1; and [wo)y = [w1];-

Proof. Let ¢ be given. Let N be asin Lemma 4.1, Take €; = ¢/N. Let €1, 6, be as in Lemma 4.2. Take
& = ;. Suppose (R, R') is a 6-approximation from ¢ : K — K’ to ¢ : L — L' and |ty — T <é.
Let z; € Wi(¢), wi € Wy(¢), such that z;(R, Ry, for i = 0,1; and [we]g = [w1],.

Let z = (bi,b), wi = (ai,af), i = 0,1. By the definition of W,(¥), we have a¢j = aj and
d(¥(a),a5) < 7%z, for all a in the segment [ao, a;]. It follows that for all b in (bo, 81), d(¢(b),b) <
7 + €1. Therefore d([zo0}, [21]) < €. u

4,6 Lemma. Let ¢ : K — K’ be a morphism with K, XK' compact. For alle > 0 thercisa é > 0,
such that if (R, R') is a §-approzimation from ¢ : K — K' top: L — I and |15 — 1{;| < &, then

ld([20):, [21}e) — d([wolg, [wile)] <€,
for all z; € Wi(¢), wi € W (¥), such that z;(R, R")w;, fori=40,1.

Proof. Let ¢ be given. First consider the case T is a finite simplicial tree. Let N be as in Lemma
4.1. Set €; = €3 = ¢/(10N?). Take the pairs €;,8; and €3, 6 as in Lemmas 4.4 and 4.5, respectively.
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Take § = min{é:,é2}. Suppose (R, R') is a §-approximation from ¢ : K — K' to ¢ : L — L' and
Ity — i—ﬂ—qi < b, Tet 2; € Wi(¢), wi € Wy(h), such that z(R, R )w;, for i =0, 1.

By the choice of N there a taut path ¥y = 7, - - - yy in Wy(¢) from z to z;, with each 9; very linear.
By choice of §; there is there is { = (; - -{n in W, (¢) from wy to w, with each {; piecewise linear
taut, such that 44, ¢; are ¢j-close, foralli=1,..., N.

We first argue that d([wo),, {w1],) is not much larger than d({zo), [21}¢). Clearly

d([woly, [w1],) > length(()
Y (length{v;) + €1)
(5> tength(y)) + Ner
d([z0)i, [21]e) + Ney
d([zo), [21)i) + €.

We now argue by contradiction that d([we],, [wi],) is not much smaller than d([zo)¢,{2:]:). Suppose
d([wolg, [wn)g) < d([2z0}t, [21):) — €. As above

d({zol, [a1k) = X length(y)
< Yo length(¢;) + Ney.

It follows that d([wo]q, fw1]) < (- length({;)) — 5. So ¢ is not taut. Since ¢ folds at at most N
points, there are 0 < ag < a; < 1, such that the length along the path (|[ao, a;] is greater than g%,
but [((a0)) = [((a1)l,-

Therefore d([y(ao))s, {v(a1)}t) > 55 — Ne1r. And the choice of &, implies that d([y(a0)]:, {y(e1))s) <
€. This is a contradiction,

Finally, if T' is not a finite simplicial tree, then T may be approximated close enough by a finite
simplicial tree, so that the same § works. |

AIA A NIA

Let ¢ : K — K',4p : L — L’ be morphisms and {R, R') an e-approximation from ¢ : K — K’ to
¥ : L — L. Tor any 0 < t,q <1 define a relation [R, R'] = [R, Ry from K to L, by [2][R, R']{w],
whenever z(R, R )w.

4.7 Lemma. Let ¢ : K — K’ be a morphism with K, K' compact. For all € > 0 there is § > 0,
such that if (R, R} is a 6-approzimation from ¢ : K — K' top : L — L' and |1 - 14| < 8, then
(R, Ry is an e-approzimation from K, io L,.

Furthermore, if R and R' are P-equivariant, then [R, R')y, is P-equivariant.

Proof. Let ¢ : K — K’ be a morphism with X compact and ¢ > 0 be given. Choose § > 0 by Lemma
4.6. We will show that § has the above stated properties.

Suppose (R, R') is a 6-approximation from ¢ : K — K’ to ¢ : L — L' and |t — i—_’_—;;f <
8. The choice of § implies |d([20]:,[21]:) — d([wolg, {t1l)] < €, whenever {z0]i[R, R']sqfwo), and
[z1]¢[R, R'}q[wi]q. So [R, R'}sq is an e-approximation.

It follows from the definition that if R and R’ are P-equivariant, then {R, R'];, is P-equivariant. B

Let ¢ : T'— T". If K, K' are sub-R-trees of T',T", respectively and ¢(K) C K’, then Wy(¢: K —

K =W, (&)N{K x K'). Moreover, £N{K x K') is connected for each element £ ¢ F,. So define K,
as Wi(¢: K — K)/(F|K x K'}. The induced map K, — T; is a monomorphism.

11



4.8 Theorem. Lel G be a group; X the space of all actions of G on R-trees; and C = C(X') the space
of all morphisms between elements of X. Then the function C X V — C defined as (¢,(s,1)) — ¢y is
conlinuous.

Proof. Let ¢ : T — T and (s,1) € V. Let U/ be an open neighborhood of ¢,;. Without loss of
generality suppose U = U{¢,¢, K, x K, P, ), where K, K’ are sub-R-trees, P is a finite subset of G,
and ¢ > 0. Take § > 0 as in Lemuna 4.7 and let V = U(¢, K x K', P, ).

Let ¢ : Y — Y’ and suppose ¢ € V and [p— 8] < 8, |g — ¢| < . Then there are sub-R-trees L, L'
and a §-approximation (R, R ) from ¢ : K — K'to: L — L',

We will show that (R, R'],s, [R, R')¢g) is a closed e-approximation from ¢, : K, — K to ¢y, :
L, — L;. Since (R, R') is closed, both [R, R'],p and [R, R|;; are closed. The choice of & implies
[R, R']sq is an e-approximation from K; to L, and [R, '}, is an e-approximation from K, to L,.
Secondly, if [2],[R, R'],q[w],, then clearly [2}i[R, R")i[w],.

Also by Lemma 4.7 ([R, R'},;, [R, R'}s;) is P-equivariant. Thus t,, € U. [ ]

Though we will not use the following corollary, it is an interesting consequence.

4.9 Corollary. Let G be a group, X be the space of non-irivial actions of G on R-trees and € = C(X)
the space of all morphisms between elements of X. Then C is homotopy equivaleni to X.

Proof. By Theorem 4.8 there is a map € x V — C. Define H : C x [0,1] = C, by Hi(¢) = ¢1. This
is continuous by Propesition 2.3. Clearly Ho(¢) = o1 = ¢ and Hi(¢) = ¢11 = Idr(yy. Thus H is a
strong deformation retract. By Proposition 2.5 the image of H; is homeomorphic to X, [ |

5. Base Points.

‘The point of this section is to show that one may continuously choose a base point over a certain
subspace of the space of actions of a group on R-trees.

Let & be a finitely generated group. Its is easy to see that the space of all non-trivial actions of
G on R-trees strong deformation retracts to the space of all non-trivial, semi-simple actions of G on
R-trees. Thus we restrict attention to this latter space.

We now generalize the notion of length function and characteristic set. Let S be be a finite
subset of G. Define £S) = £r(S) = minyer maxyes d{z,g(z)). The characteristic sel of S is
Ts = {& € T|maxges d(z,9(2)) = &S)}.

5.1 Lemma. Let G XT — T be an aclion on an R-tree and S a finite subsel of G. Then Tg is
contained in the union of a finite simplicial tree and R =1, where g ranges over all elements of 5

satisfying £(g) = €(S).
In particular, if R is a fintle simplicial iree, then Ty is a finile simplicial tree.

Proof., Arbitrarily choose a point & € T. For each g € S there is a unique shortest segment from =z
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to Ty. Let X be the union of these segments. Clearly X is a finite simplicial tree. It suffices to show
Ts CXUR.

Given y not in X U R, if z is the closest point in X to y, then 2ees 4(2,9(2)) < e 5 Ay, 9(y)).
This completes the proof. ]

Let 7 be a finitely generated group and endow G with the metric dig,h) =1, 9 # h and let G
act on itsell by multiplication. Let X be a space of non-trivial, semi-simple actions of & on R-trees
and € = C(G, X) be the space of all equivariant maps of G to elements of X'. We will now define a
function b : X — C, such that R(B(T)) = T, for all T € X.

Fix a finite generating set § for G. Let G X T — 7' be an action on an R-tree.

If it is irreducible or it is reducible and dihedral, then R is finite. By Lemma 5.1 Ts is a finite
R-tree. Let D be the diameter of T, Choose z, to be the unique point such that T is contained in a
closed ball of radius /2 centered at z,. If it is reducible and a shift, then choose z, € T arbitrarily.

Now define b(T") : G — T by g + g(z.). We now check that this choice varies continuously. Recall
the useful identity d(z, g(z)) = 2d(z,T,) + £(9).

5.2 Proposition. Let G be a finitely generated group; X the space of non-trivial semi-simple actions
of G on R-trees; and C = C(G, X) the space of all equivariant maps of G to elements of X. The
associated base point function b: X — C is continuous.

Proof. Let T'€ ' and let U be a neighborhood of b(T"). The proof breaks into cases.

Case £(S5) = 0. This case is vacuous — for £(S) = 0 and G finitely generated imply the action is
trivial [Cu-Mo], [A-B].

Case £(S) > maxyes £(g). In this case Ts is a single point and there are go, g, € S, such that
Ts = {z|d(z,9i(z) = £(S),i = 0,1}. Let Ts = {z.}. Let 2; be the point on Ty, nearest to z,. In
particular z, € [0, 21] and d(xq,21) = d(zo, 2.} + d(z., ).

Without loss of generality suppose I/ = U/ (W(T),P x K, P,c), where S C P and P(z,) C K. Take
V =U(T,K, P,§), where § = %min{f,d(a:*,Tgo),d(x*,Tgl}. Suppose ¥ € V. By definition there is a
P-equivariant, closed §-approximation R from K to I for some L C Y.

Take ¥y, 40,41 € L, such that 2, Ry, and z;Ry;, i = 0, 1. By definition |d(yo, #1) — d(vo, %) —
d(y, m)| < 28. Also [d(z., g:(2.)) — d(y,, 5:(5.))| < 6 and td(zi, g:i(2:)) — d(i, 9i(y))| < 6. 1t now
follows that

[d(ys, Yy,) — dlwe, 1) — d(wi, Yy,)) [3(d(ys, 9i(9e)) — £v (9:)) — d(ye, ) — E(dws, 9:(30)) ~ Ly ()]

!?%(d(ya,g.-(y*)) — d(yi, 9i(v:))) — (s, w))|

A

Using the above inequalities one may show that [6r(S) — £y (S)| < 26. Therefore Ys is a point
and d(y.,Ys) < 26. Now observe that (Id, Rys) is a P-equivariant, closed e-approximation from
(T):PoKtob(Y): P>Y. Sob(Y)eU. '

Case £(S5) = maxzes £(g) > 0 and T is T is finite. Let g € S, such that G) = 4G). So there
are points g, 23, such that Ts = fzo,z1]. If 2 # z1, choose orientation so that g translates from
o to z;. Consider the segment [¢7(0), g(z1)]. Since g=!(z0), g(21) do not lie in Ty, there exists
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g0, g1 € S (possibly equal), such that d(g-1(z0), 90(97 (20))) = &(S)+2¢(g) and d{g{z1},g0{g(21))) =
€(S) +24(g).
Without loss of generality suppose U = U(b(T), Px K, P, €), where S, St ¢ Pand P(fg~(a0),9(21)]) €
K. Take V = U(T, K, P, 6}, where § = L min{¢,&(g)}. Suppose Y € V. By definition there is a P-
equivariant, closed §-approximation R from K to L for some LC Y. '
Take g, 0,01 € L, such that 2, Ry, and z;Ry;, i = 0,1, Arguing as above using all the points
Yo, Yo, ¥1, 9~ (%), g(y1) one may show that the Hausdorfl distance between [yo,11] and Ys is less
than 26. As above it follows that d(ys,b(¥)(1)) < 25. Now the proof is completed as above.
Case £(S) = max,es &(g) > 0 and T is T's is infinite. In this case T'is reducible and a shift. This
is proved as the previous case, ]

Proposition 5.2 is definitely false if we let & be the space of all actions. In particular, there is no
continuous choice of base point for a trivial, non-minimal action with a non-compact fixed point set
nor a non-trivial action with exactly one fixed end.

6., Free Groups.

Let V, be a wedge of n circles. Choose a CW-complex structure on V,, with exactly one vertex, Let
¥, be the universal covering. Let F, be the free group of rank n. Identify F, with the fundamental
group of V,, based at the vertex. So F,, acts on Va.

A lamination £ on V, is a non-empty, closed, 0-dimensional subset of the 1-skeleton. A {ransverse
meastre on £ is a function p from the set of arcs transverse to £, such that (i) ply+4") = )+ (')
and (i) p(y) = p(v’), whenever v,v" have the same image.

A measured lamination (£, p) in V, has a Lift (£,/) in V. Say the action F,, x T'— T'is dual to
the measured lamination (£, pt) if there is an equivariant, locally constant map p: V, — £ — T, such
that ji(y) = d(p(+(0)), p(7(1))), for every transverse arc 7 : [0, 1] —» V,, meeting each leaf of £ at most
once. Clearly every measured lamination on ¥}, is dual to an action on an R-tree and the space of
measured laminations on Vj, is homeomorphic to a closed (n — 1)-simplex X Rt.

Say a map V.. — T is transverse if it is linear on every 1-simplex.

6.1 Lemma. Let X be a space of non-irivial semi-simple actions of Fy, on R-trees and lel C = C(Va, X)
be the space of all equivariant {ransverse maps of V,, 1o elements of X. Then there is a map B : X —C,
such that R(B(TY) =T, forallT € X.

Proof. Choose an arbitrary finite generating set S for F,. By Proposition 5.2 the associated function
b: X — C(Fyn,X) is continuous.

Let F,, x T — T be a non-trivial, semi-simple action. We start by defining V., — T on the
0O-skeleton. Identify the action of Fj, on the O-skeleton of V, with the action of F,, on itself by
multiplication. Define V;, — T on the 0-skeleton by &(T).

Now extend to the 1-skeleton linearly. This defines B(T ) V., — T. Clearly this is transverse. Its
easy to see that this varies continuously with F, x T = T |
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Let ¢ C &’ be the space of non-trivial actions dual to measured laminations on V,,,

6.2 Lemma. Let X' be the space of all non-trivial semi-simple actions of F, on R-trees and C = C(X)
the space of all morphisms between elements of X. Then there is a mapr: X — C, such that

(i) D(r(T) €G and R(»(T)) =T, for al T € X and
(i) »(T) = Idp, for all T € G.

Proof. Let B : X — ¢(V,,X) be the map of Lemma 6.1. For each action F, x T — T and transverse
map B(T) : ¥;, — T we will define a measured lamination on V.

Choose any invariant, countable, dense, 0-dimensional subset D of T, such that it contains every
vertex of T and contains the image of every vertex of V,,. We want the pre-image of the complement
of D to be a lamination,

Now equivariantly change the map on the interior of each 1-simplex to a new monotone map,
such that the pre-image of D is an open dense subset of the simplex. This determines a measured
lamination on V¥, where the measure of each transverse arc is the length of its image in T. Let (L, u)
be the induced measured lamination on V.

Clearly these measured laminations vary continuously with F, x T' — T If R is the R-tree dual
to (£, ), then define r{T") to be the morphism R — T which factors ¥, = 7. Thus + : ¥ — Cis a
map with the desired properties. |

6.3 Theorem. Let X be the space of all non-trivial, semi-simple actions of F,, on R-trees. Then X
is contractible,

Proof, Let r: & — C, (¢,(5,1)) + ¢y, and R : € — X be the maps of Lemma 6.2, Theorem 4.4,
and Proposition 2.4, respectively.

By Proposition 3.8 ¢, € C. Define H : & x[0,1] - X by ﬁ(l_t)(T) = R{¢0:), where ¢ = r(T).
Then H is a strong deformation retract of X to G which is contractible. [ |

Let G be a group and let X' be the space of minimal semi-simple actions of ¢ on R-trees. Let
£: X — LF(G) be the map which assigns to each action its length function. By [Cu-Mo] it is bijective.
Paulin [Pau2] showed that this function restricted to the space of irreducible actions is an embedding.
He proves this by working only with the definitions of the two topologies. His techniques actually
work to show that £ is a homeomorphism.

The multiplicative group R+ acts on X —0 by homothety. So the induced map [¢] : (¥ —0)/R* —
PLF(Q) is also a homeomorphism.

We will need some notation. Let G be a group and S a finite subset of G. Let X' be the space of
actions of G on R-trees. Define {[-{} : ¥ — R by [|T}f = &p(S). 1t satisfies {|aT}] = o||T|| and it is
continuous. It follows from above that [£]|{T" | T" is non-trivial, minimal semi-simple and [|T]| = 1} is
a homeomorphism.

i5



Recall that our deformation may not leave invariant the sub-space of minimal actions. This
problem has a few simple solutions. We solve it by working with length functions in the next theorem.

6.4 Theorem. The space PLF(F,) is contractible.

Proof. Let X be the space of non-trivial semi-simple actions of F,, on R-trees. Let H be the strong
deformation retract in the proof of Theorem 6.3. From the above discussion there is a stong deforma-
tion retract H : PLF(F,) x [0,1] — PLF(F,) covered by H|{T € X | |{T|| = 1}. As above the image
of H, is contractible. I

The space of projective small length functions SLF(F;,) C PLF(F,) is the set of length functions
corresponding to actions where the stablizer of any edge does not contain a free group of rank two.

Let T — T be a morphism. If 7" is small (free) then T is small (free). The next two results are
obvious.

6.5 Theorem. The space SCF(F,) is contractible. -

6.6 Theorem. The space of free actions of F, on Relrees is coniractible. |

Define CV(F,,) C PLF(F,) to the image of length functions of actions of F;, on simplicial trees.
Marc Culler and Karen Vogtmann [Cu-Vol] constructed this space to study the outer automorphism
group of F,. They also showed it was contractible using combinatorial methods. We will show that
it also follows from Theorem 6.4.

6.7 Theorem. [Culler-Vogtmann] The space CV(F,,) is coniractible.

Proof. It suffices to see that the deformation H of Theorem 6.4 leaves CV(F,) invariant, Let

¢y ¢ T, — Ty, If Ty is simplicial and the action on 7} is free, then the action on Ty is properly

discontinuous. Thus the action on 7} is properly discontinuous. It follows that T, has an invariant

simplicial sub-tree and the action on T} is free. »
Let CV (F,,) be the closure of CV(F,,). M. Steiner [St2] showed that it was contractible.

6.8 Theorem. [Steiner] The space CV (F,) is contraciible.

Proof. Again it suffices to see that the deformation H of Theorem 6.4 leaves CV {F,) invariant. This
follows from the proof of Theorem 6.7. ]

7. Surface Groups,
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Let F be a closed hyperbolic surface. Let HZ — F' be the universal covering and let #; ¥ act on
H? by covering transformations. A lamination L is a non-empty, closed subset of F, such that each
point in £ has a neighborhood I/ and a homeomorphism (U, N L) = ({0,1) x [0,1],{[0, 1] x Z), for
some O-dimensional subset Z of [0,1]. such that each path component is a simple geodesic. A geodesic
lamination is a lamination such that each path component is a geodesic. A transverse measure H
on a lamination £ is a function from the set of paths transverse to £ to [0, +00), such that (i)
uly+7") = p(y) + a(y') ; and (i) p(y) = #(7"), whenever 7,4’ are homotopic through a I-parameter
family of transverse paths.

A measured lamination (£, 1) in F has alift (£, £) in ©I2. Say the action m F x T — T'is dual to
a measured lamination (L, p) if there is an equivariant, locally constant map p: H2 - £ T, such
that fi(y) = d(p(¥(0)), p(7(1))), for every transverse path v : {0,1) — H2 meeting each leaf of £ at
most once. Every measured geodesic lamination js dual to an action on an R-tree {Hat], {Mo-Shd].
William P. Thurston [Th] proved that the space of measured geodesic laminations is homeomorphic
to 5" x R*, where n = —3x(F).

To prove the next two lemmas it will be convenient to fix an ideal iriangulation of I, ie. a
CW-complex structure with exactly one C-simplex and with every 2-simplex meeting exactly three
L-simplicies. Lift this ideal triangulation to a triangulation of H2,

Say a map H? — T is transverse if it is an embedding on every 1-simplex,

7.1 Lemma., Let X be g space of non-trivial, semi-simple actions of mF on R-frees and let ¢ =
C(H?, X) be the space of all equivariant transverse maps of H? 10 elements of X. Then there is a map
B:X ¢, such that R(B(TY) =T, foraliT € ¥.

Proof. Take any generating set for w, F. By Proposition 5.2 there is a bage point map & : ¥ —
C(‘ﬂ'l F, (1’)

Let mF xT — T be a non-trivial, semi-simple action. We start by defining H2 — T on the
O-skeleton. Identify the action of m I on the O-skeleton of H? with the action of F, on itself by
multiplication. Now define H? — T on the 0-skeleton by §(T).

Extend to the 1-skeleton linearly. Finally, extend to the Z-skeleton as follows. Subdivide each
2-simplex by coning to the centroid. Map each 2-simplex to T by sending the centroid to the centrojd
of the image of its verticies and coning the rest. (The centroid of three points a,b,¢ in an R-tree, is
the unique point 2 which minimizes d(a, z) + d{(b,x) + d(c, 2).) This defines B(T):H? - T, Clearly
this is transverse and continuous. ]

Laminations on a surface are more complicated than laminations on a l-complex. We need the
following tool to study laminations on a surface [Th}], [Pe-Ha). A smooth graph is an embedded graph
7 € F, such that for each point P € 7, there is a smooth, open arc in 7 through p and any two such
arcs are tangent at p. A train track is a smooth graph 7, such that for each component ' of F' — 1,
the double of C along its smooth frontier has negative Euler characteristic. A train track v carries
a lamination £ if there is a homotopy equivalence f i+ F —~ F, such that f la : @ — 7 is a smooth
immersion for each smooth arc a G L. Every geodesic lamination is carried by a {(non-unique) train
track,
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A smooth graph in a surface
Figure 4

A. Hatcher [Ha] and Morgan and Otal [Mo-Ot] proved that given an action m F x T — T, there
is an action m FF x R — R and morphism R — T, such that # F x R — It is dual to a measured
geodesic lamination. It is easy to see that the construction of Hatcher varies continuously with T'. We
will sketch his proof in the next lemma.

Let G be the space of non-trivial actions of 7 F dual to measured geodesic laminations on I

7.2 Lemma. Let F be a closed hyperbolic surface; X be the space of all non-trivial, semi-simple
actions of m F on R-trees; and C = C(X) the space of all morphisms between elements of X' Then
there is a map r : X — C, such that

(i) D(r(T)) €G and R(r(T)) =T, for alT € X; and
(i} v(T) = Idp for diT €G.

Proof. Let B : X — C(H2,X) be the map of Lemma 7.1. For each action m F' x H2 — H? and
transverse map H? — T we will define a lamination on F.

Choose any invariant, countable, dense, 0-dimensional subset D of T, such that it contains every
vertex of T and contains the image of every vertex of H2.

Now equivariantly change the map on the interior of the 1-skeleton to a new monotone map, such
that the pre-image of I is an open dense subset of of the 1-skeleton. Do the same for the 2-simplicies.
This determines a measured lamination (£, pt) on F, such that the measure of each 1-simplex in F is
the length of the image of any lift in T

This lamination is carried by a smooth graph T, where each 2-simplex in the triangulation of F'
contains exactly 3 edges of 7. See Figure 4. There is one complementary region which prevents 7 from
being a train track. We will argue that some sub-graph is a train track which also carries the essential
leaves of the lamination. The measure determines weights on the graph edges. Suppose all the weights
on T are non-zero. Since T bounds a disk, there are trivial leaves in the lamination. Remove the trivial
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leaves. Now at least one of the edges of  bounding the disk has weight zero, so we may throw out

that edge. Also by construction of the transverse map no lift of a leaf of the lamination to H? meets

a lift of an edge more than once. So at least one more edge has weight zero and we may throw out

that edge. Finally we may isotop the lamination and remove one more edge. Thus the lamination is

" carried by a train track. It follows that there is a dual action 73 F x R — T and a morphism R — T,
Finally, we may replace the measured lamination by a measured geodesic lamination.

The weights on the train track vary continuously. By [Th] these measured laminations vary con-

tinuously with = # x H? — H?. Define (T to be the morphism R — T’ This completes the proof.
|

The last two theorems follow as in §6.

7.3 Theorem. Let I be a closed hyperbolic surface and X be the space of all non-trivial semi-simple
actions of m I on R-irees. Then X strong deformation reiracts 1o a sphere of dimension —3x(F). =

7.4 Theorem, Let F' be a closed hyperbolic surface. Then PLF(ryF) sirong deformation retracis to
a sphere of dimension —3x(F). u

All the theorems of this section have an ansalog for a compact surface with boundary F, Since the
fundamental group of F is a free group, one should take the geometry of the surface into consideration.
A natural class of actions is the space of actions of 7y F on R-trees, such that #,F fixes a point for
each component F of dF.

The methods of these last two sections generalize. The key ingredient is the space G in Lemmas
6.2 and 7.2. Tor example let G = Gy * Gy and take G to be the join of PLF(Gy) with PLF(G,).
Then PLF(G) strong deformation retracts to G.
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