COMBINATION THEOREMS
FOR ACTIONS ON TREES

Richard K. Skora 1

Group actions on R-trees arise naturally in combinatorial group theory [Ly], [Ch] and {A-M], in
arithmetic group theory [Ti] and in the study of deformations of hyperbolic structures on groups
[M-5]. -

The theory of Bass and Serre [Se] shows that the actions of a group G on simplicial trees are
in natuzal one-to-one correspondence with splittings of the group G. For actions on R-trees there
is no such complete structure theorem. In particular it is unknown whether every group which
admits a nontrivial action on an R-tree must admit & nontrivial splitting, Thus it is both natural
and useful to consider actions on R-trees by groups which admit splittings.

Suppose a group G splits as a free product with amalgamation @, *@, G2 (or an HNN-extension
(G1+a,, 1)), where each factor group and amalgamating group acts on an R-tree and 8 certain
compatiblity condition is satisfied. The main result of this paper is the construction of an action
of G on an R-tree which is to the category of groups actions on R-trees as the free product
with amalgamation (or HN N-extension) construction is to the category of groups (see §3), The
construction in the case of the free product with amalgamation has already been done by Michael
Steiner [St]. His construction is combinatorial.

Our constructions are topological and are partially motivated by the approach Scott and Wall
[S-W] take to the Bass-Serre Theory. Essentialy there is an isomorphism between the category
of group actions on R-trees and the category of spaces with measured foliations (§2). In order to
construct an action on an R-tree we first construct a space with a measured folition, Then the
action is dual to the measured foliation. This not only makes the construction of the action simple,
but it also provides a way to study the action,

In §3 we construct both the free product with amalgamation and the HNN-extension in the
category of group actions on trees. After constructing the free product with amalgamation, it is
obvious how to construct the HNN-extension. In fact one could copy our construction for more
general spittings of groups. . _ ' _

In §4 we prove an inverse to each of the above constructions. Thus the above constructions are
completely general. More precisely, given an action on a tree by a group which splits there is a
corresponding mazimal splitting of the action. It is irivial to find a non-maximal splitting.

In §5 we give some applications of the above methods. In the first example we construct &
me.asured foliation on a closed, genus two, orientable surface which is dual to a free action on an
R-tree. By other methods it was shown by Peter B. Shalen and John W, Morgan [M-S4] that most
closed surfaces have measured geodesic laminations which are dual to free actions on R-trees (in

this case the differerice between foliations and geodesic laminations is convenience),
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In a second example we construct a non-free action of a closed, genus two,

on a tree which is the equivariant image of the first example.
I thank John Milnor for helping me formulate T
Steiner for the example in §4,

orientable surface

heorem 3.5, I am also grateful to Michael



1. The Category of Group Actions on Trees.

The following definitions are taken from [A-B}, [C-M], [M-52] and {G-S]. Let X be a metric
space with metric d. For any distinct 2,y € X the segment from = to y is [z, 4] = {z € X|d(=,y) =
d(zl z) +d(z,y)}.

An R-tree is a non-empty, metric space T' satisfying

(1) for all 2,y € T, [2,y] is isometric to a segment in R;
(2) for all 2,y,2 € T, if [2,y] N [y, 2) = {y}, then [z, 2] = [#,¥]Uly,2]; and
(3) for all 2,3,z € T, there is a w € T, such that [z, 4] N[y, 2] = [y, w).

Notice we will let simply tree mean R-tree.

Given an R-tree T and 2 € T, define B, = {[z,3] |y € T— {2} }. Define an equivalence relation
by [, ] ~ [z, 2} if f2, ¥} N [2, 2] = [z, w)], for some w € T — {2}. A direction at = is an equivalence
class in B,

Let z € T. If  has exactly two directions, then say z is an edge, otherwise z is a vertez. Notice
that z is an edge if and only if T — {#} has exactly two connected components.

A morphism from a tree T' to a tree T' is a map ¢ : T' — 77, such that for each segment [z, y]
there is a segment [z, w] C [2, 9], such that ¢ [z, w] is an isometry.

A group action on a lreeis a triple T = (G, T, p}, where G is a group, T is an R-tree, and p
is a homomorphism of G into the group of isometries of T' which act on the left, Sometimes the
action T will be denoted simply as G x T — T,

An action is minimalif there is no invariant, proper subtree. An action G x T — T'is reducible
if either

(1) G fixes a point of T}
(2) G fixes an end of T; or
(3) G leaves invariant a set containing two ends of T',

The category of group actions on trees has as objects group actions on trees.
Given group actions on trees 7 = (G, T, p) and 7' = (&", T, p"), & morphism from T to T is

& pair (w, ¢), where w : G — G’ is & homomorphism and ¢: T — T’ is a morphism satisfying

#(pl9)(2)) = p'(w(g))(#()),

forallge G2 €T,



2. The Category of Measured Foliations.

Some of the definitions and propositions of this section generalize [G-S].

2.1 Definition. Let X be a topological space. A foliation F of X is a decomposition of X into
subsets which are path connected.

Let U be an open subset of X and T a tree. A chartis a map p: U — T, satisfying for each
¥ € T, there is a leaf £ of F, such that p~'(y) is a path component of U 1 £,

2.2 Definition. Let X be a topological space and F & foliation. A fransverse measure ponFis
a collection of charts {p, : Uy — Ty}, satisfying

(1) {Ua}a is a basis for X; and

(2) if Uy C Ug, then there is an isometry T, — T3 making the diagram

Ua —3 Up
Pal lps

Ty - Ts

commute,

A measured foliation is a pair (F, u), where F is a foliation and i is a transverse measure. The
category of measured folialions has as objects pairs X = (X, (F, 1)), where X is a topological space
and (F,p) is a measured foliation, Given two objects X = (X, (F ), ' = (X' (F,)), a
morphism from X to A’ is a map f: X — X’, such that for all z € X there are charts Uy — Ty,
Usg — Tg withz € Ua, 9(z) € Ug, and a tree morphism T, — Tp, such that the diagram

Ve 4 U,
Pal ] Pp
T — Ty

commuies.



2.3 Definition. Let X be a path connected, locally path connected topological space with uni-
versal cover X. Let X = (X, (F,n)) be a measured foliation and (X, (F, 1)) the lifted measured
foliation. Let 7 = (G, T, p) be a group action on a tree. Say that X is dual to 7 if there is an

identification of ;X with G and an equivariant map p: X — T, such that
(1) for every y € T, p~*(y) is a leaf of F; and

(2) for every =z € X there is a chart U, — T, with # € U,, and monomorphism T, — T making
the diagram

Uy X
Pal l»
Ta — T

commute.
It is clear that if X is dual to both 7 and T', then 7 and 7’ are isomorphic. The following

approximately says that the functions which takes a measured foliation to its dual is a functor.

2.4 Proposition. Let X = (X,(F,u)), &' = (X', (F,p')) be dual to T = (mX,T,p), T' =
(ms X', T, p'), respectively. Then for every morphisn f: X — X' and equivariant ift f: X — X'
there is a unique morphism (w, @) : T — T, such that f(g(z)) = (w(g))(f(2)), forallge G,z € X;
and the diagram

x 4L X
ip iy
T 5 T

commuies.

We now show that this functor is onto. Given an action G x T — T, define a dual foliation
as follows. Let K be an Eilenberg-MacLane space with fundamental group G. Let X — K be
the universal covering. The diagonal action G x (K x T) — K x T is a covering action. Define a
measuted folistion (F, i) on X x T whoses leaves aze the K factors and whose transverse measure
is given by projection to T. Let X = (K x T)/G with the induced foliation (#,1). The pair
(X,{#F,p)) is called the realization of G x T — T.

The following is obvious.

2.5 Proposition. Let T be an action on a iree with realization X = (X,{F,p)). Then X is dual
to 7. ' a



Proposition 2.6 implies that the function that takes a measured foliation to its dual has an

inverse. In particular, it implies that the realization is essentié]ly unique,

2.6 Proposition. Let T = (G,T,p),T' = (G, T, p') have realizations (X, (7 ), (X', (F, 1)),
respectively. Then for any morphism u : T — T’ there is a morphism f : X — X' and lift
f: XX making the diagram

X - x
lp iy
T —~» T

commute,

Proof. By hypothesis X = K x T, X' = K'x T and X = X/q, x' = X'/G'. Choose basepoints
in X and X’ in order to make the identifications m K = G and m K’ = G'. Choose basepoints in
X and X' in order to identify the fundamental groups with the covering transformations. So there
is Q: K — K', such that 2, = w. Let {3: K—»K'coverﬂ Define § : XX asf= 2 X 4. So
f covers some f:X — X', Finally, the djagrarn

X - X
Ip ¥4
T - T
is clearly commutative. O

For completeness we mention that a measured foliation always determines a measure on paths
in the following way.

A pathy:[0,1] — T'is monotone if v~(y) is connected for enchy ¢ T A pathy:{0,1] - X is
transverse to F if for each ¢ € [0, 1] thereis n p, : U, — T, with ¥() € U, such that p, orly~HUy)
is monotone.

Given a transverse path v : [0,1) — U, define the measure #{7) = d(pa (7(0)), P(7(1))), where
d is the metric on T, More generally, extend p so that

1 +712) = pln) + slr2),

for all piecewise transverse paths 7y, v2.



3. The Combination of Actions on Trees.

Two important constructions in the category of groups are the free product with amalgamation
and the HNN-extension. In this section we show in the category of group actions on trees the free
product with amalgamation and the HNN-extension exist. The reader should notice the analogy
with The Klein-Maskit Combination Theorems for Kleinian groups [Ma].

The following is obvious.

3.1 Lemma. Let Ty, Ty and T; be trees and ¢y : Ty — Ty and ¢y : T — T2 be monomorphisms
with closed image. Then T = (11 [[ T2)/(¢1 = ¢2) is a tree. o

3.2 Definition, Let Ty, 7} and T3, be group actions on trees and 4, : 7o — 77 and 4y : Ty — T

be monomorphisms. A free product with armalgamation is a commutative diagram

To
w7 N\ Uz
Ty . ,
YN < va
T
such that for any commutative diagram
7o
u N\ 2
T o,
wN
T.f

there is a unique w : 7 — T’ with uov; = v}, i = 1,2.

3.3 Theorem. Let Ty, T, and Ty be group actions on trees and wy : Tp — Ty and uy : Ty — T3 be

monomorphisms with closed image, Then there is a unique free product with amalgamation

To
Uy N\ Uz
T T;
v\ & V2
T

Furthermore, v;,i = 1,2, is a monomorphism.

Proof. Suppose T; = (Gi,Ti; ), i = 0,1,2. Let A = (Xy,(%F,)) be the realization of T,



i=0,1,2. By Proposition 2.6 the morphism #; induces a morphism fi:Xo— X;,i=1,2, Let
Ao x [1,2]) = (Xo x [1,2], (Fo, o) x [1,2]). So also X, x (1,2} is dual to 7.

Define X = (X; [{(Xo x [1,2]) ] X3)/ ~, where (2,1) ~ fi(2) and (2,2) ~ fa(z). And define
& measured foliation (F, ) on X to extend the measured foliations on X0, X1, X, in the obvious
way. Then set & = (X, (F,1)). We now show that X is dual to an action on a tree.

Clearly m X = Gy *g, G2. By the Bass-Serre theory [Se] this splitting of m X corresponds to
an action on a simplicial tree 7, X x R — R. One may orient the edges of R so that for each edge e
the stablizer of e is a conjugate of Gy and the stablizer of 8e is a conjugate of Gy, i = 1,2, Thete
is a obvious equivariant map ¢: ¥ — R. Let 7, be dual to g~(e), 7p,. be dual to g {8e), and
the monomorphism 7, — Tp;e be induced by inclusion.

One can now define a direct limit in the category of group actions on trees. The directed set is
the set of vertices and edges of R, with e < 8¢, 85¢. For each edge ¢ associate the monomorphisms
7, — Ty, i = 1,2. By repeated applications of Lemma 3.1 the direct limit T exists. Clearly there
is action on a tree T = (G, T, p). By construction there is a quotient mapp: X — T showing that
A is dual to 7.

Nowlet v : T — 7' and vyt Ta ~ T be morphisms, such that v} o u; = vh 0 uy. Let
X' = (X', (F', 1)) be the realization of 7. By Proposition 2.6 there are morphisms 4 — P o
i = 1,2. These induce a morphism ¥ — &' By Proposition 2.4 this induces a morphism
u:7 - T Clearly wov; = v}, i = 1,2. Now check that u is unigue, a

Notice that the group of 7 is G: *g, G2. By analogy with groups the free product with
amalgamation of actions on trees of Theorem 3.3 will be denoted simply as 7 = T %7, T2 and
75, i=10,1,2, will be identified with its image in 7,

Given an action on a tree 7 = (G,T,p) and s € G, there is an automorphism 4, : 7 — T
defined by g ++ 595~ and 2 ps)(e), forallge Gand z ¢ T

3.4 Definition, Let T; and 7;, be group actions on trees and u; : T — 77 and ug : Ty — T
monomorphisms. An HNN-eztension is diagrams
u; v
Toh - T » T= (G,T,p) i=1,2,
and s € G withvou; = 4,000 f2, such that for any diagrams
u; v’ ,
7o - 1 - T = (G’:T’:P‘) i=1,2,
and ¢ € G’ with v o u; = A; 09" o uy, there is a unique #: 7 — T’ with uov = » and w(s} = t.

The following is proved as Theorem 3.3.



3.5 Theorem. Let Ty and Ty be group actions on trees and vy : To — Ti and uy : Ty —+ T, be

monomorphisms with closed image. Then there is a unigue HNN-ezlension

W v
To - T — T;(G:T)P) yi=1,2

and 8 € G with vouy = A, o vouy., Furthermore, v i8 @ monomorphism. ]

Notice that the group of T is (Gy*¢,,4). By analogy the HNN-extension of Theorem 3.4 will
be denoted simply as T = (Ty*71,, ), where v o u; = A, ovouy. Also 77 will be identified with its
image in 7 and Ty will be identified with its image in 7 under v o uy.

Notice that the length functions on G can be calculated from the length functions on each of
the factor groups and amalgamating groups.

Recall that if G acts on T', then T'C is the fixed point set of G. The following two propositions

will be used in the next section,

3.6 Proposition. Lel @ = Gy g, Gz and (G, T, p) = Ty *1, Tz, where T; = (G, T}, (p|Gi)|T) ,
i=10,1,2. If Gy #£ Go, then TG c 1.

Proof. Suppose Gy # Go. Let & = (X,{F, n)) be as in the proof of Theorem 3.3, Recall the
projections ¢ : X — R and p: X — 7. By hypothesis each vertex of R has valence greater than
or eqilal to two.

Let y € TS, There is some z € X, such that p(z) = v.

If g(z) == B¢, then y € Ty. If g(z) # 8ye, then there is some g € Gy, such that g(g(2)) =
g(q(2)) # q(=). Since y € T%, g(p(=)) = p(g(z)) = p(=). Thus both g(z) and z belong to the
same leaf £ of £, It follows that £n q"I(B.ge) 7& § and y € T}. n|

Again the following is proved 'as Proposition 3.6,

3.7 Proposition. Let G = Gixg, and (G, T, p) = Ti*1,, where Ty = (G, T}, (p|Gi)|T3) , i =0, L.
If Gy # Gy # 8Gos~t, then TS C Ty, a



4. An Inverse to the Combination of Actions on Trees,

In this section we prove inverses to the theorems of §3. The following example due to Michael
Steiner shows that this may be difficult.

Let X be the quotient of two riemannian circles and a riemannian segment where each endpoint
of the segment is identified with a point in a different circle. Let a,b be embedded loops in the
different circles. Then 7,.X = (a,b) and the covering action {a,b) x X — X is an action on a tree.
The splitting {a,b) = (a} » {ab} induces a spitting of the action, but the factor trees are not the
corresponding minimal invariant subtrees. We leave it to the reader to find the correct splitting of

the action,

4.1 Definition. Let T = (G,T,p), where G = G, *@, G2. A free product with ammalgamation
T =T, *7, T, where T; = (G4, T, (PIGH)IT:) , = 0,1,2, is mazimal if for any other free product
with amalgamation 7 = T %1+ T}, where T;! = (G, T, (PIGT!) i =0,1,2, ifT{ CT,i=0,1,2,
then T} =T}, i = 0,1, 2.

4.2 Theorem. Let T = (G,T,p) be a minimal action on a tree and € — Gy xg, Ga. If G is
finitely generated and G; # G, i = 1,2, then there is a mazimal free product with amalgamation
T=7 *1, T2, where T = (Gl'lj}l (p]GJu}) y i= 0,1,2.

Proof. Suppose G = @ *Gs Gz. Let L be the set of all free product with amalgamations 7T =
7; »7, T3, where T, = (Giy Ty, (p|G:){Ty) and T} is closed, i = 0,1,2. Define a partial order on
L as follows. If T = T} 1, 75, where T = (Gi, T, (plG)IT;) and T = T *7; Ty, where T =
(Go, TY, (pIG:)|TY), then T *1, To < T = T{ +7: T whenever T; D T, i=0,1,2

It will be shown that L has a maximal element. Firstly, L is not empty, for 7 = 77 »1, Tp,
where T; — {Gi, T,pGy) , i =0,1,2.

Secondly, each chainin L has an upper bound for the following reason. Let ¢ = {7, e T g
be a chain, where 7% = 7" *7a T, Defire T; = NI, for i = 0,1,2,

Since G is finitely generated, it either has a unique minimal invariant subtree or a fixed point,.
In the former case each T contains the mjnimal invariant subtree. In the latter case Proposition
3.6 implies each T 2 T%:. Thus T, # 8. Similarly T, # @ and it easily follows that Ty # 6.
Clearly 7; xy, T; is well defined and there is a morphism ¢ : 7y %7, T, — 7.

It will be shown that this is an isomorphism. To see that ¢ is a monomorphism is easy. It
follows from the fact that each 7" 72 T, — T is & monomorphism. That it is an isomorphism
follows from minimality,

By Zorn’s Lemma L contains a maximal element,

16



4.3 Definition, Let T = (G, T, p), where G = (G1*@y,3). An HNN-extension T = (Ti*7,, 8),
where I} = (G, T3, (p|G)IT}) , i = 0,1,2, is mazimal if for any other HNN-extension T =
('Ii'*f;, s), where T = (G, T}, (PlG)ITY) , i=0,1, if T C T i=0,1, then T =T,i=0,1,

4.4 Theorem, Let T = (G,T,p) be a minimal action on a tree and G = (Gi*@,,8). If Gy is
finitely generated and Go # Gy # 8Goa™', then there is a mazimal HNN-extension T — (Ti*1,,8),
where 'I: = (Gi,T.', (piG;)IT,) ’ i= 0, 1.

[}
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5. Examples of Measured Foliations Dual to Actions on Trees,

The first example of the fundamental group of a closed surface with negative Buler characteristjc
acling freely on a tree is due to Morgan and Shalen [M-S4]. They prove each closed surface of
Euler characteristic less than —1 has g measured, geodesic lamination, such that each leaf and
each complementary component is simply connected, They then show that the lamination is dyal

to a free action on 5 tree.

5.1 Example, fet F be an orientable, closed surface of genus two. Then there is o free action on
an R-iree ( F, T, p) which is dual {0 4 measured foliation (F, (F,n)).

Let each {a,d) and {c,d) be free groups of rank two,

Let X and X, each be the wedge of two riemannian circles of circumference 1. Fix the wedge
point as the base point in each Xi,i = 1,2, Then 7X1 = (a, b), where a,b are the standard
generators of each of the eircles, Similarly 7, X, = {c,d), where ¢,d are the standard generators of
each of the circles.

Fori= 1,2 endow Xi with a measured foliation (Fiy 1), where each point of X; is a leaf and the
measure is given by are length, Clearly (X, (*, #:}) is dual to the covering action mXixX; = JE'.-,
which we call 7}, § = 1,2, Notice that each of {a,b] and [, d] have translation length 4,

Let Xy be a riemannian eircle of citcumference 4 and let m X, = (t). Endow Xo with a
measured foliation (Foy t0), where again each point of Xo is a leaf and the measure is given by arc
length, Again (Xg,(f'o,po)) is dual to the covering action 11 Xo x Xy — Xo, which we call 75,
Notice that ¢ has translation length 4.

So the homomorphisms

e [a, bt e, d]
induce equivariant morphisms

fl :Xno—i.fl,fgtig-—!fz.

These in turn induce free products with amalgamation 7 — T\ *7, Ty which are parameterized by

As in the proof of Theorem 3.3 1t X = (X, [](Xo x (1,21 x,)/ ~, where ~ is induced by
the above morphisms. And let (F, ) be a Tneasured foliation on X whick extends the measured
foliations on Xo, X1, X2 in the obvious way. Clearly 1, X — {a,b) %y (c, d) and ¥ = (X, (F, 1)) is
dual to 7. Also X s an orientable, closed surface of genus two,

Fix embeddings Xy, X, — F, such that F . X1 — X, is an oren annulus and [, b] is isotopic
to [c,d]. Fix an isotopy so as to make the identification 1y X == m F. Then there is an embedding
X — F which is unique upto isotopy. This induces a measured foliation on .

i2



Let F be the universal cover of F and let (.7-' ) p-) 1ift the foliation, Clearly the action on the tree
is free if and only if no leaf of F s left invariant by a non-trivial element of 7, F. Or equivalently

To see that the action is free for all but countably many choices of fi, fa is easy. Any two
distinct translates of Ty (or T3) in T meet in at most a segment, Equivalently, any two lifts of

The above example generalizes to give for any orientable, closed surface of negative Euler
characteristic a measured foliation and a dual free action. The non-crientable case is more delicate.

One should notice that Example 5.1 is not that special. By [Sk] every free action of 3 closed
surface group on a tree js dual to a measured lamination. Given a measured lamination (L, p)
on a closed surface F there is a simple, closed curye C which meets every leaf of [ essentially
and transversely, It js casy to see that the induced lamination of the surface F — C is dual to a
simplicial tree. Thus every free action of a closed surface group on a tree is either a free product

with amalgamation of an HNN-extension of simplicial actions.

5.2 Example, Let F be an orientable, closed surface of genus two, Then there is q non-free action
on an R-iree (, F, T, p') which is the image of the above free action (m F,T, p).

Let X} be the quotient of two riemannian circles of circumference land 1, respectively and
a segment of length %, where cach endpoint of the segment is identified with g point on different
cireles,

Endow X} with a measuzed foliation (F3, 1), where each point of X; is a leaf and the measure
is given by are length. Then there js an obvious projection X2 — X! whichis a morphism,

Let X' be the amaigam resulting from Xo, X3 and X3 with dua] (m F, T, p'). Clearly there
is & morphism (i F, T, p) — (m F, T',p'). Notice that X' is not a surface. In fact the morphism
Xo — X} is4to 1on a set of positive measure, It follows from either [Mo] or [Sk] that (mi F, T, )

is not free, In fact, for almost every point of T the stablizer contains a free group of rank two. O
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