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Abstract

We define two basic types of outer automorphisms ¢ of a free group F, which we call
prime automorphisms. The first type, called Dehn twist, mimics algebraically a Dehn twist along
a simple closed curve on a surface. The second type is modeled on a pseudo-Anosov
homeomorphisms on part of the surface, while fixing all complementary subsurfaces pointwise. It

is called partial pseudo-Anosov.
Precise definitions are given in terms of the canonical action of Out(F,) on the space A of

combinatorial laminationsin F : A prime automorphism ¢ has precisely one (weakly) attractive

fixed point on A , the limif lamination L(p) .
Two prime automorphisms ©1 , @3 commute if both fix the corresponding pair of limit

Jaminations. If only ¢ fixes both limit laminations then ¢; is said to semi-commute with ¢4 .

Theorem I: (1) Forevery ¢ ¢ Oui(F,)) thereis an exponent t= 1 and a factorization
ob = @popg @
as a product of prime automorphisms, such that Pj semi-commutes with ¢; forall j>1i.

(b) The above prime faclorization of cpt is unique, up to permutation of commuting neighbors

and certain canonical assembly operations for Dehn twists,

Theorem II: For any two automorphisms ¢ , ¢' € Out(F,)) the question of whether or not ¢

and @' are conjugate in Out(F,)) is algorithmically solvable.



0. Introduction

The purpose of this research announcement is to present the main ingredients needed for the
solution of the conjugacy probiem for {ree group automorphisms. Qur solution is based on a new
prime factorization and a subsequently deduced structural analysis of the automorphisms in
question, which, if ¢ € Out(F,) is “reasonable”, can be performed by hand in a “reasonable”
amount of time. Although we explain some of the computational aspects here, our main objective
is to explain the various new concepts entering the work. Our approach is heavily based on the
fundamental work of Bestvina-Handel [BH] and on some earlier work of the author [L1, L2].

Partial solutions of the conjugacy problem, including in particular the irreducible case, have
been obtained carlier by J. Los and by Z. Sela, who in particular obtained structural data strongly

related to some of what is presented here (compare also [L2]).

1. Laminations in free groups (from [L1, L2] )

Let A be afixed basis of F,, , and consider the set

T = {s=..5.1598]... | sjc AuA-l ) 8i-1 #Si'l }
of biinfinite reduced words, provided with (a) the product topology, (b} the shift operator o,
and (c) inversion (s~1 = ...s718095.1 ..). A lamination L is a non-empty subset of T

which is closed with respect to (a) - (c) .

A lamination L is minimal if it does not contain any proper sublamination. There are two
types of minimal laminations:
I. L isfinite; Then L = { c‘(si1) | t=0,..,9-1, s=..www..} forsome w= §1 ... 5q
€eF,.
II. L is infinite: Then L has the following “recursive” property: For any s, s’ € L any finite
subword of s is also a subword of s'.

Out(F;,) acts canonically on /o and hence on the space A of all laminalionsin . A
lamination L is a limit lamination of ¢ € Out(F,),if @(L) =L and L is weakly ¢-attractivel.
We denote by L{yp) the union of all limit laminations of ¢ . (This is a {inite union, hence L{g) is

again a lamination.)

! This means precisely the following: There is an s € £ with the following two properties:

(1) For some (and hence any) ¢ € Aut(F,) representing ¢ and every k= 0 there exists n= 0
such that every symmefric finite subword w = s, 5_y47 ...55 of 8 = ...5_1 50957 ...
satisfies | ¢(w)|z2n+k.

(2) For any k> 0 every finile subword of any element of L is also a subword of s sk+1 ... .



(1.1) Definition: ¢ ¢ Out(F,) is prime if L{p) is minimal and if ¢ is pure: Every
p~periodic conjugacy class in F,, is actvally fixed by ¢ . If L(p) is finite, then ¢ is called

(single) Dehn twist. Otherwise we call ¢ partial pseudo-Anosov.,

It follows from [BH] (sce also [S] ) that every automorphism ¢ has an exponent t= 1
such that ¢! is pure. The smallest such exponent will be denoted by t(p) . Using [BH] one can

compute () , although this is not strictly necessary for deciding conjugacy of automorphisms.

2. Dehn twists

Multiple Dehn twist automorphisms ¢ have been introduced and studied in [CL2] : They
arise from a graph of groups decomposition @ of F,, with cyclic edge groups by “twisting” along
the edges. More precisely, ¢ induces the identity on all vertex and edge groups of g, and this
property characterizes multiple Dehn twists. A single Dehn twist automorphisms is given in the
special case where Q has only one edge. Thus every multiple Dehn twist is canonically the
product of pairwise commuling single Dehn twists.

Single Dehn twists can be described alternatively in terms of a suitable basis B = {b1, ...,
by} of Fy,where ¢ is given through ¢ ¢ Aut(Fy) with either
(i) ‘blF(bl, s b)) T id and ‘I’]F(bm+1, e b) T conjugation by some w € F(bq, ..., byy) , or
@) Py, ..., by1) =1d and $(by) =by w forsome w ¢ F(by, ..., by-1) .

Here w (or w1 ) is called the twistor of ¢ .

Conlrary to the custom in JCL2] in this paper we mean by a Dehn twist without further
specification a single Dehn twist.

In terms of the Bestvina-Handel theory [BH] every Dehn twist can be represented by a
2-strata relative train track representative, where the transition matrix of every stratum is the
identity maftrix. In fact,

(2.1) every such automorphism is a multiple Dehn twist.

3. Partial pseudo-Anosovs

Examples come from surface theory: Every geomelric automorphism (i.e. induced by a
homeomorphism h of a surface M2 with boundary) is a partial pseudo-Anosov, if, in terms of

the Nielsen-Thurston decomposition, precisely one of the factors of h is pscudo-Anosov, and all



the other ones are the identity (in particular there are no twists on the curves separating the invariant
subsurfaces of M2 ).

Every (not necessarily geometric) partial pscudo-Anosov has a relative train track
representative as in [BH] with precisely one irreducible exponentially growing stratum, and all
other transition matrices equal to the identity. However, this this doesn't quite characterize partial

pseudo-Anosovs, We obtain:
(3.1) Every 2-strata relative train track map with identity transition matrix on the lower stratum

and a primitive (i.e. all positive powers are irreducible and hence grow exponentially) transition
matrix on the upper stratum represents a partial pseudo-Anosov automorphism,

However, relative train track maps can be quite deceptive: For example, though every
irreducible automorphism (in the sense of [BH] ) is a partial pseudo-Anosov, the converse is not
true even if the automorphism is represented by a 1-stratum train track map f:r — © with
primitive transition matrix. However, using the notion of the fundamental group nq1l. of a
lamination (well defined up to conjugation in Fy, ) and the technique for computing it given in

{L.1, L2], one derives a quick combinatorial test which gives:

(3.2) Proposition: The question of whether a given automorphism ¢ € Oui(Fy) is irreducible

or not is effectively decidable.

The limit lamination L{g) of a partial pseudo-Anosov is strongly ¢-expanding: For some
(and hence any) ¢ € Aut(Fy) representing ¢ and every k=0 there exists n= 0 such that every
finite subword w of any biinfinite sequence s € L(), with |w|=n, satisfies | o(w) |=|w |+
k. Itturns out that this property is the basis for various of the characterisitc properties of a partial

pseudo-Anosov. We define:

(3.3) An outer automorphism ¢ of F, is called generalized partial pseudo-Anosov if L{yp) is

strongly e¢-expanding and if ¢ is pure.

4, Semi-commuting automorphisms and factorization

(4.1) Definition: If ¢1 and ¢ are two automorphisms, and ¢9 fixes every o-orbit of
L(p1), we say that oy semi-commutes with @1 . We write

P T PrEPpgx @y
for the product ¢ = @, @p_1 ... 1 if Pj semi-commutes with ¢; forall j > i, and call this a

factorization of ¢ . If all the ¢; are prime, we use the term prime factorization.



This terminology derives from the following observation, which, for the special case of

geometric automorphisms, follows directly from the definitions .
(4.2) Proposition: Any two automorphisms commute if each semi-commutes with the other.

This statement and also its converse seem to be true if in the definition of semi-commuiation

we allow that @3 permutes the o-orbits of L{¢pq) ; but we do not use this here.

5. Prime factorization: EBExistence

Bestvina-Handel [BH] show thatevery ¢ ¢ Oul(F,;) can be represented by a relative train
track map f: r — 1t which can be constructed in finitely many steps. If we raise ¢ to a
sufficiently high power ¢! and refine the decomposition of  into strata appropriately, then the
transition matrix for every stratum is either primitive or else the identity matrix, After a minor
modification of r (we "blow up” certain vertices to edges in order to separate endpoints of edges
from distinct strata) we can decompose { into a product f =1, f;.1 ... f1 , such that each fj
leaves all but one of the original strata poiniwise fixed, and, if this stratum is not exponentially

growing, leaves all but one edge pointwise fixed. Thus we can apply (2.1) and a slight extension

of (3.1) to obtain:

(5.1) Proposition: Forevery ¢ € Out(F,,) we can derive algorithmically a prime factorization

cpl((P) ToPp Pl * Q]

6. Uniqueness of the prime factorization

The factorization of cpt(‘l)) into prime factors as in (5.1) is not unique, but it is not far
from it either: There are iwo canonical operations on the prime factors which “improve” a
factorization (more precise information on the nature of these operations is given in the sections 8
and 10):
(6.1) Commuting Dehn twists 61 , 82 with conjugate twistors give a product $7 = &1 which is
again a (single) Dehn twist. In this case we can replace in (5.1) 81 = 89 by their product twist.
(6.2) A product & x ¢ of a Dehn twist & and a partial pseudo-Anosov ¢ , where & does not
commute with ¢ , may give again a partial pscudo Anosov with L(8 * ¢) = L(¢) . Then we can

again replace in (5.1) 8 * ¢ by their product.



We obtain:

(6.3) Proposition: The prime factorization of cpt(‘P) given in (5.1) is unique, up to

permutation of commuting adjacent factors and the operations (6.1) and (6.2) .

An even better uniqueness result can be obtained if we require the number of prime factors

occuring in (5.1) to be minimal. For our purposes, however, it is more suitable to compose

cerlain prime factors to larger factors:

(6.4) Structure Theorem: For every ¢ € Out(F,) there is a canonical factorization

cpt(‘P) = Y4 Agx..x A1,
where y is a generalized partial pseudo-Anosov, and every  Aj=8j 4+ .. xdj 1 isa multiple
Dehn twist, such that none of the single Dechn twists 8; k. commuics with any Ay with j' <j.

The above lactorizations can be derived algorithmically.

7. The strategy for the conjugacy problem

The fact that the factorization in (6.4) is canonical means precisely that for conjugate pure
automorphisms ¢ and ¢' = p‘1 @ p these factorizations have the same length, and that
corresponding factors of the two factorizations are also conjugate by p . Thus the conjugacy
problem is now reduced to solving the following four subproblems:

(7.1) Solve the conjugacy problem for multiple Dehn twists (see section 8 ).

(7.2) Solve the conjugacy problem for (generalized) partial pseudo-Anosovs. This is the heart of
the work described here (see sections 9 - 11).

(7.3) Compose the given solution of the factors to a solution of the conjugacy problem for oll®)
(7.4) Extend the solution of the conjugacy problem from oU®) to ¢ (see section 12).

8. The conjugacy problem for multiple Dehn twists (joint work with M. M. Cohen)

In [CL3] itis shown that for every multiple Dehn twist Aj one can derive algorithmically
a graph of groups @ asin section 2 with the following properties:
(8.1) Every edge group injects onto a maximal cyclic subgroup in both of its adjacent vertex
groups.
(8.2) No vertex group has more than two adjacent (germs of) edges with conjugate edge groups,



and, if there are two, then the corresponding twistors have opposite signs.

Such a graph of groups G is called proper, and it is shown in [CL3] that § together
with the set of twist exponenis is a complete and computable set of conjugacy invariants for Aj .

If one has & product A = Ay * ... * A1 of semi-commuting muitiple Dehn twists, then
there are (uniquely determined) proper graph of groups decompositions @ foreach 4, andwe
can “compose” them as follows: Every vertex group of Qg4 is a finitely generated subgroup of Fy
and hence decomposes with repect to @4-1 into a sub-graph-of-groups. Every vertex group of
this sub-graph-of-groups decomposes now with respect to 4.2 , and so on. This gives a very
fine decomposition of Fj into a proper generalized graph of groups 53 which differs from a
classical graph of groups in that the edge groups of the j-th level are not contained in any vertex
group of any level lower than j. The data of § can be derived algorithmically from the @; , and,

together with the set of twist exponents, they completely characterize A up {o conjugacy.

9. The conjugacy problem for pseudo-Anosov automorphisms

A pscudo-Anosov auiomorphism ¢ is a partial pseudo-Anosov with the further
requirement that m{L(p) = Fy; . Pseudo-Anosov automorphisms ¢ share with irreducible
automorphisms the property that there is an (up to rescaling) uniquely determined R-tree g such
that all free simplicial R-tree actions (i.e. all points of Culler-Vogtimann space) converge under
iteration of ¢ towards 9. Hence, rather than solving the conjugacy problem for ¢ we can solve
it for the pair (@, 9°) . This much improves the situation, as, the richer the structure of two given
objects, the easier it is to prove that they are not conjugate.

All geometric data of ¢ such as the number of Fp-orbiis of branch points or their indices
are conjugacy invarints for (¢, ) . For practical purposes it is often convenient o first compute
those, with the purpose to quickly get data which in many cases suffice to prove non-conjugacy.
However, we will concentrate here on data which will eventually suffice to completely characterize
the conjugacy class of o .

Notice first that for each representative ¢ ¢ Aut(F,,) of ¢ there is a homothety H: g — &
with stretching factor A > 1 which commutes with ¢ in the following sense: For all w € Fy
one has Hw = &(w) H (as actions on ). We define an eigen ray p to be an H-invariant
embedded ray in 9, i.c. a ray which starts at an H-fixed point Q and which is stretched by H
onto itself. We consider on p the initial segment of translates w p of p, and notice that these
“repeal” canonically if one applies H to p. Thus we concentrate on a fundamental domain pg < p

with respect to the H-action on p. Forevery w Q € pg we define an overfap
length(p n w p)
ov{w =
W = T w0




which clearly does not change if one replaces w Q by H(w Q), and is invariant with respect to

rescaling of . We then show:
(9.1) Lemma: Forany C> 0 there are only finitely many w Q € pg with op(w Q) =C .

(9.2) Lemma: There existsa C > 0 such that the set W(py,C) := {w e Fy | op(wQ)=C )
generates 1 L(p) = Fy, .

We can describe the dependence of W = W(pg, C) on pg in the following way: If we
"slide” pg along p (fowards the end of p ), then W changes precisely if some w Q with w ¢
W coincides with the endpoint of pg closer to Q , and hence has to be replaced by H(w Q) =
¢(w) Q . In particular, starting with a sel W which is a generating system, one obtains after
card(W)-many such changes the set (W) , which is again a generating system. In the course of
this sliding procedure we can easily check whether there isa W(pg', C') with smaller cardinality
than W which also generates Fj, . As there are only finitely many eigen rays p in & (see
[GILL] ), we obtain:

(9.3) Proposition: There is a finite sct W{p) = (W1, ..., Wy} of generating systems W; of
Fy, which are canonically determined by 9" (and hence by ¢ ), up to conjugation in F, and up to

application of ¢! (t ¢ Z).

(9.4) Corollary: The ceniralizer Cen(p) of ¢ in Out(Fy) is a finite extension of the cyclic

subgroup generated by ¢ .

The set W(p) in (9.3) is a complete and finite set of characterizing data for ¢ up to
conjugation in Out(Fy,) : For any second automorphism ¢’ ¢ Out(F,) we chose an arbitrary
generating system from W(e') , and transform it by a sequence of Nielsen operations into a basis
of F,. We apply the same sequence of Nielsen operations to each of the generaling systems W ¢
W{p) , and we write some (arbitraritly chosen) representatives ¢ , ' € Aui(F,;) with respect to
these bases. If for some W the resulting images of the basis elements agree up to a conjugation,
then ¢ and ¢' are conjugate, and we have actually determined the conjugating automorphism. If
this is not the case for any of the generating systems W ¢ W(p) , then ¢ and ¢' are not
conjugate.

It remains to indicate how we can derive the generating systems W(e) in an algorithmic
way: Here we crucially use combinatorial train tracks as introduced in [L1, L2] and the direct
construction of the invariant R-tree I through combinatorial train tracks as given in [L3] (see

also [GJLL] ). In fact, it turns out that an easier, purely combinatorial proof of (9.3) can be



given entirely in terms of combinatorial train tracks, avoiding the invariant R-tree altogether.
Combinatorial train tracks have the advantage over train track representatives (from [BH] ) that for
conjugate automorphisms and corresponding invariant combinatorial train tracks T, v one always
finds two semi-conjugacies between r and ' which are inverse to each other up to a power of ¢
. This allows us to compute the above described data (in particular the set W(gp) ) dircctly from the

combinatorial train track.

10. Similarity classes for partial pseudo-Anosovs

The restriction of a partial pseudo-Anosov ¢ (o its characteristic subgroup n{L(p) is a
pseudo-Anosov automorphism, and its conjugacy class is the most important conjugacy invariant
for ¢ . Further characteristic data about ¢ comes from the observation that every subgroup Fp,
of Fy, of rank m = 2 with the property that all of its conjugacy classes are fixed by ¢ determines
canonically a similarity class [®] ¢ Aut(Fy,) for ¢ with the property that each ¢' ¢ [$] fixes

some conjugate of Fy, pointwise.

(10.1) Definition: &, ¢' ¢ Aut(F})) are similar if ¢ and ¢' are conjugate in Aut(F,)) by

an inner automorphism.

Similarity classes for lifts of ¢ correspond geometrically to (possibly empty) Nielsen
classes of fixed points of topological representatives of ¢ . A nice geometric interpretation is
given through the Goldstein-Turner graph D(p) , sec [CL1], where each connected component
corresponds precisely to one similarity class. As this correspondence is canonical, we identify the
set of similarity classes with mgD{(sp) . In particular D(p) gives the possibility to compute many
data about similarity classes (¢.g. the rank of the fixed subgoups), as the methods described in
[CL1] for positive automorphisms cxtend directly {o automorphisms with a relative train track
representalive. In [GJLL] it is shown that every orbit of branch points of the R-tree ¢ from the
last section correspondsina 1 - 1 fashion to a similarity class for ¢ , and we call those similarity
classes relevant, A purely algebraic definition is given alternatively by requiring that the index (=
2 rk(Fix(®) + #{equivalence classes of ®-attractive fixed points at « } - 2, see [GJLL]) of a
relevant similarity class [®] be non-negative, and that Fix(®) is not contained in Fix(¢') for
any [¢'] with strictly larger index. The above Nielsen class of fixed points corresponding to a
relevant similarity class is non-empty for any topological representative of ¢ .

(10.2) The inclusion mqL(p) c F,, induces canonically a map i(p ; ﬂoD(cpl-ﬂlL((p)) — moD(ep) .



(10.3) Proposition: The conjugacy class of a partial pseudo-Anosov ¢ is determined
precisely by the following data, which can be computed effectively:

(1) The conjugacy class of cp|7Il L(p) in Out(mqL(p)).

(2) The finite set { Dq , ..., Dy } of relevant similarity classes of ¢ , and for each D; the
(finite) preimage under the above map 1<p .

(3) For each similarity class [<1>|7[1L(q,)] in one of the preimages i{p"l(Dj) from (2) the induced

inclusion Fix(¢|n1L(q,)) < Fix(®) .

Let us specify how, for two given partial pseudo-Anosovs ¢ , @' we apply this
proposition: We first concentrate on the restricted auntomorphisms ¢g = <p|,[1L(q,) and ¢'g =

(P',ﬂlL({p) which are pseudo-Anosov. Using the material described in the previous section we

decide whether these are conjugate, and if so, we obtain finitely many possibilities for the
conjugator. For each such conjugator p we proceed as follows: The automorphism p gives a
canonical 1 - 1 correspondence between the relevant similarity classes for g and ¢'g, and for
any two corresponding classes [®g] and [$'p} an (up to conjugation) canonically determined
isomorphism p : Fix(®g) — Fix(2'g) . We pick an arbitrary basis V of Fix($®g) and consider
the corresponding basis p(V) for Fix(®'g) . We then pick an arbitrary basis B for Fix(®),
where ¢ € Aut(F,) is determined by [®] = iq,({éo]) , perform Whitehead transformations on B
until the total length of V as words in B is minimal, and record all the (finitely many) shortest
systems of words for V. We repeat the same procedure for p(V) and compare the resulting
systems. More precisely, this has to be done simultaneously for all [¢g] in the same preimage
i(p'l({‘b]) . If the obtained lists are the same for all relevant similarity classes [®] € mgD(p) (for
some conjugator p as above), then ¢ and ¢’ are conjugate, and conversely. Indeed, this

methods gives directly a finite presentation for the centralizer of ¢ in Out(Fp) .

Before considering the case of generalized partial pseudo-Anosovs, we want to describe
briefly the effect of multiplying a partial pseudo-Anosov ¢ from the left by a Dehn twist 8 which
semi-commutes but does not commule with ¢ . This can now be described precisely as one of the
following two:

(1) The product ¢' =8 ¢ is again partial pscudo-Anosov, with L{p") = L{g) , but the index of the
relevant similarity classes may have changed, or distinct similarity classes may have been united.

(2) The limit lJamination L(¢') is no longer minimal: It consists of L(p) together with finitely
many more leaves, with the property that L(cp'lnl]_,(q)')) = L{p) and (P'l‘][-l]_,((p') = @lnl]_,(q,') .
Again multiplication by & has created a new relevant similarify class, or clse increased the index of
one of the already existing relevant similarity classcs. However, in contrast to (1), this change in

the relevant similarity classes of ¢ involves at lcast on class [¢] where i(p‘1([§>]) does not



contain any relevant similarity class from ‘P!nlL(tp) :

11. The conjugacy problem for generalized partial pseudo-Anosovs

The solution of the conjugacy problem for generalized partial pseudo-Anosovs y follows
precisely the scheme from the previous section for partial pseudo-Anosovs, with a certain amount
of additional complexity:

(1) In general it will not be true that L(y]ﬂlL(Y)) = L(y) . Instead, we obtain a sequence of
nested y-invariant laminations Lo < L1 c ... © L(y) and their fundamental groups, defined

iteatively through Lj-1 = L(Ylnle) , starting from L(y) and ending at the core lamination L
which satisfies L = L(VlﬂlLO) . The length of this sequence is bounded by the number of primes

in any prime factorization of y, and it turns out that L(y) \ Lg is finite.

(2) The automorphism vyg = y|L0 is in general not a pseudo-Anosov: However its limit
lamination is, though not minimal, still strongly expanding (see section 3 ). Thus minor technical
modifications of the methods described in section 9 allow us to perform a similar procedure as in
the case of pseudo-Anosovs and yield an analogous set W(yg) of finitely many generating
systems for each of the connected components of 1L , which characterizes yg up to conjugacy
in Out(z1Lg) . In particular it follows that the statement (9.4) is also true for generalized
pseudo-Anosovs, i.e. generalized partial pseudo-Anosovs ¢ with w1L{(p) = F, , and this
property seems to characterize this class of automorphisms.

(3) We consider the inclusions m1Lj<wiLj+q aswell as m{L(y) ¢ Fy , and the induced maps
i . on their similarity classes asin (10.2) . Just as in Proposition (10.3) we determine from

3,

Wi(yp) a complete and computable set of conjugacy invariants for y = YI?‘ILI by analysing the
preimages under iy, 1 of the relevant similarity classes for yj and the inclusions of the
corresponding fixed subgroups. We repeat the procedure replacing y; by yo = Y|n1L2 and yq
by y1,and so on. After finilely many steps we have reached the level of F;, and thus found a

complete and computable set of conjugacy invariants for y.

12. The complete set of characterizing data for ¢

Given the canonical factorization of ¢!{®) as in the structure theorem (6.4) , our final task
is to (1) compose the data derived in sections 8 and 11 in order to obtain a complete set of

effectively computable conjugacy invariants for o), and (2) toextend thisto ¢ :



- 11 -

(1)  Recall the generalized graph of groups § derived in section 8 which, together with the set
of twist exponents, completely characterizes the product of the multiple Dehn twist factors of
o!(®) . For each of the relevant similarity classes for the generalized partial pseudo-Anosov factor
y of oH®) we consider the fixed subgroup and observe that this is invariant under the action of
(@) (notice that the twistors for the Dehn twists A; are fixed by y since y semi-commutes with
Aj). The fixed subgroup is a finitely generated subgroup Fmi < Fy,, and § gives rise to a finite
generalized-graph-of-groups decomposition §i for Fmi which, together with the twistors,

characterizes ‘Pt((p)|Fm. . The finile set W(p) of prefered generating systems for m1Lq(y) , the
i

generalized-graph-of-groups decompositions for the fixed subgroups of all relevant similarity
classes of ¢ together with the twist exponents, and the data derived in part (3) of section 11,
expressed in terms of the @i , constitute a finite computable data system S((pt(‘P)) which

completely characterizes ot{®) up to conjugacy.
(2) As ¢ conjugates ol(®) to itself, the complete set of data S(o!(®)) has to be invariant

under ¢ . In particular ¢ induces a permutation of the relevant similarity classes for o®) | and
for their fixed subgroups a system of isomorphisms which has finite order. This allows us to
reduce the question of whether ¢ and ¢ arc conjugate, under the assumption that for some
t=1 the powers ¢! and ' are conjugate, to the question of whether two given system of finite
order automorphisms on subgroups Fmi of Fy are conjugate, where the conjugator has to
prescrve certain conjugacy classes or elements in these subgroups.

Finally, this question has an effective answer through work of Gersten, Krstic and
Vogtmann: They show that, if such a conjugator exists, it can be found by, starting with an
arbitrary basis B of Fmi , applying Whitehead auvtomorphisms o B which either reduce a certain
complexity, or, if that complexity is minimal, yields one of finitely many bases of Fmi . Thesc are
related fo each other through Whitehead automorphisms which do not increase the complexity.

Summarizing we obtain:

12.5 Theorem: For any two automorphisms ¢ , ¢' € Out(F,)) the question of whether or not

@ and ¢' are conjugate in Out(F,)) is algorithmically solvable.
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